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Abstract

Background: Osteoarthritis (OA) is the most common joint disorder in the world and represents the leading cause
of pain and disability in the elderly population. Advancing age remains the single greatest risk factor for OA. Several
studies have characterised disease development in the guinea pig ageing model of OA in terms of its joint
histopathology and inflammatory cytokine profile. However, the quadriceps muscle has yet to be studied in relation
to age-related disease onset or early disease progression. Therefore, we examined whether the initiation of OA in
the Dunkin Hartley guinea pig is associated with changes in the quadriceps skeletal muscle. Male Dunkin Hartley
guinea pigs (N = 24) were group housed with free access to standard guinea pig chow and water. At 2, 3, 5 and

7 months of age, six animals were selected based on their proximity to the median weight of the cohort. OA severity
was graded at each time point by the assessment of toluidine blue stained step coronal sections of the total knee joint.
Serum CTX Il was measured as a potential biomarker of OA severity. Myosin Heavy Chain (MHC) isoforms were
determined by a validated real-time PCR assay. Oxidative and glycolytic potential was determined in quadriceps
homogenates via the measurement of ICDH and LDH activity.

Results: Initiation of OA in the DH strain guinea pig occurred between 2 and 3 months of age and progressed
until 7 months when the final analyses were conducted. Serum CTX Il significantly decreased during this early
period of OA initiation and levels were unrelated to the histopathological severity of knee OA at any of the time
points assessed. MHC mRNA measurements revealed a significant elevation in MHC IIX mRNA (associated with
fast-twitch skeletal muscle fibres) coincident with the initiation of OA at 3 months of age, with preliminary findings
suggestive of a positive correlation to OA severity at this time point.

Conclusions: These preliminary findings suggest that disease initiation in the ageing guinea pig model of OA is not
associated with overt quadriceps muscle atrophy but instead is coincident with altered expression of mRNAs associated
with quadriceps skeletal muscle contractile properties (specifically fast-twitch MHC 1IX).

Keywords: Ageing, Age-related, Dunkin Hartley, Myosin heavy chain, Osteoarthritis

Background

Osteoarthritis (OA) is the most common joint disorder
in the world and represents the leading cause of pain
and disability in the elderly population [1-3]. Advancing
age remains the single greatest risk factor for OA in
susceptible joints, with the prevalence of knee OA
specifically increasing for each decade of life after the
age of 60 [4,5]. Advancing age is also associated with
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functional changes to the skeletal muscle system including
decreased mass, strength and proprioception [3-8]. These
functional changes result from sarcopenia, a process
which includes progressive denervation, atrophy due to
disuse, and the accumulation of connection tissue [5,9].

It is known that patients with knee OA exhibit muscle
weakness [1,10-17], which is one of the most frequent
and earliest reported symptoms [18]. It primarily affects
the quadriceps muscle with little or no evidence of
hamstring weakness [11], resulting in a reduced quadriceps
to hamstring ratio [19]. Quadriceps to hamstring ratio
perturbations may be further accentuated in some
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instances by hypertrophy of the hamstring muscle in
addition to quadriceps dysfunction [20]. Historically,
muscle weakness has been considered a secondary effect
in knee OA, resulting from disuse of the affected joint
due to the presence of pain and/or inflammation, and
therefore has received little attention with regards to its
involvement in the initiation or progression of OA.
However, growing evidence suggests that quadriceps
weakness may precede the onset of radiographic evidence
of OA and pain [13], and be directly involved in its
pathogenesis [14]. Firstly, quadriceps weakness is reported
in those patients with radiographic signs of knee OA in
the absence of pain, suggesting that the muscle weakness
is unlikely to be due to disuse of a painful joint [21].
Secondly, quadriceps weakness is noted in a number of
patient groups who are susceptible to developing knee
OA; for example, patients who have gait abnormalities
resulting in increased knee loading [22], patients with
anterior cruciate ligament insufficiencies [20] and, most
commonly, patients who have undergone partial men-
iscectomy surgery as a treatment of medial meniscal
tears [23].

In attempting to identify and develop new therapeutics
for OA, the Dunkin Hartley guinea pig model has been
extensively used by ourselves and others since it develops
OA spontaneously with advancing age and has several
clear parallels with the human condition both during
initiation and disease progression [24]. For example, OA
initially develops predominantly on the medial aspect of
the tibial condyle, with involvement of the medial femoral
condyle only in response to disease progression [24-30].
This finding replicates the human situation where
approximately 75% of the load is passed through the
medial aspect of the knee [25]. The development of
OA in the Dunkin Hartley strain has also been strongly
associated with increasing age and body mass [31] as
with the human condition [1]. Furthermore, similarities
between the Dunkin Hartley model and human OA have
also been described at the molecular level. For example,
the development of human knee OA has been associated
with the expression of collagenase 1 and collagenase 3,
also known as matrix metalloproteinases 1 and 13 respect-
ively, at the site of OA development [32,33]. Importantly,
both collagenase 1 and 3 are highly expressed in the
Dunkin Hartley guinea pig model [34].

Several studies have previously characterised the age-
related development of OA in the guinea pig in terms of
its joint histopathology [28] and inflammatory cytokine
profile [35]. However, the quadriceps muscle has yet to
be studied in relation to primary disease onset or early
disease progression. We hypothesised that the initiation
of knee OA would be associated with changes to the
quadriceps skeletal muscle group. Further, these changes
may manifest as changes in gross muscle mass, subtle
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changes to the contractile and metabolic potential of this
muscle group, or a combination of the two processes.
With the aim being to further characterise the Dunkin
Hartley guinea pig as a model for age-related human
knee OA, we performed a preliminary study using a small
cohort of animals to assess changes in the quadriceps
muscle group during the initiation and early progression
of OA in the guinea pig model. In order to fully charac-
terise the age-related development of OA in this species,
it is critical to assess the molecular and pathological
changes that occur earliest during disease initiation.
Dunkin Hartley guinea pigs have a lifespan of approximately
4 years, reaching sexual maturity from approximately
45 days after birth. With this in mind, four discrete
ages were chosen at which we hypothesised the animals
would be free from disease (2 months), developing initial
pre-osteoarthritic changes (3 months) and progressing to
moderate OA during early adulthood (5 and 7 months).
At all ages, we characterised contractile and metabolic-
associated factors in the quadriceps muscle and deter-
mined OA severity through histopathological staining of
knee joint sections. Subtle changes in factors associated
with muscle contractility were determined using a set of
oligonucleotide primers developed and qualified specifically
for this purpose [36] (Table 1).

Results and discussion

Animal weight parameters

All animals remained in good general health throughout
the study and all 24 animals were included in the following
analyses. All animals were group housed for the duration of
the study and were active through their light phase. In line
with the study animals being within their longitudinal
growth phase, both body mass (g) and quadriceps mass
(g) increased significantly with advancing age (P <0.001).
Mean animal bodyweight progressed from 510.60 +3.27 g
at 2 months to 1160.78 +48.72 g at 7 months of age
(Figure 1a), whilst mean quadriceps mass increased from
4.68 +0.28 at 2 months to 13.40 +1.24 g at 7 months of
age (Figure 1b). As an index of quadriceps hypertrophy or
atrophy, a quadriceps to body mass ratio was determined
[quadriceps mass (g) over body mass (g)]. Quadriceps
mass relative to bodyweight remained constant at all ages
(P =1.000) (Figure 1c).

Tibiofemoral pathology

Histological examination of tibiofemoral joints was per-
formed in accordance with previously validated method-
ology [35] and revealed an increase in joint pathology
with advancing age. At 2 months of age, animals were
generally free from knee OA with the exception of one
animal that presented with mild proteoglycan loss in the
superficial zone. Interestingly, the affected animal was
the heaviest out of the 2-month cohort although it was
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Table 1 Oligonucleotide primer sequences for quantitative PCR assessment of Guinea pig myosin heavy chain mRNA

Gene name Forward primer (5'-3') Reverse primer (5'-3') Amplicon size (bp)
MyH1 (MHC 11x) TTCATCCAAATGCAGGAAAG TCTTTATCTCAAAAGTCATAAATACAA 90

MyH2 (MHC lla) TGTGGAATGACCAGAGCAAG CCTTTGCAATAGGGTAGGACA 85

MyH4 (MHC Iib) TCCATCTACTGCTGCAACG ACTCTGCAGATTTTATTTCCTTG 93

MyH7 (MHC ) AAGTATCGCAAGGCTCAA CCTTTCCTTAATTCCAAGC 129

See Tonge et al. for a comprehensive assessment of primer specificity [36].

still significantly lighter than any single animal assessed
at 3 months of age. At 3 and 5 months of age, animals
presented with proteoglycan loss extending as deep as
the mid-zone and mild cartilage surface irregularities. At
7 months of age, proteoglycan loss and cartilage surface
irregularities were more pronounced than at previous
ages, although no animals exhibited osteophytosis at any
of the joint margins studied (Figure 2a—c).

Cartilage (collagen type Il) degradation

Disruption of the structural integrity of articular cartilage
is the major histological finding in OA and rheumatoid
arthritis. Degradation products resulting from cartilage
disruption include the terminal telopeptide of type II
collagen (CTX II), which is released into the circulatory
system [37]. Serum CTX II concentration decreased
significantly with advancing age from 462.34 +7.32 pg/
mL at 2 months to 33.63 +3.17 pg/mL at 7 months
when the last study animals were assessed (P <0.001)
(Figure 2d).

Quadriceps femoris contractile parameters

The characteristics of skeletal muscles are a function of
the contractile and metabolic properties of the muscle
fibres from which they are composed. Contractile prop-
erties of the quadriceps skeletal muscle were assessed
by the expression of myosin heavy chain (MHC) isoform
mRNAs at each study time point as previously described
[36,38]. Although many isoforms of MHC have been
described, four are associated with adult skeletal muscle.
One “slow-twitch” (Type I encoded by MyH7) muscle-
associated MHC isoform and three “fast-twitch” (Types
IIA, IIX and IIB encoded by MyH2, 1 and 4, respectively)
muscle-associated isoforms. MHC mRNA expression has
been previously shown to correlate well with both MHC
protein abundance [39,40] and traditional histochemical
measures of muscle fibre type [41].

MHC I and ITIA mRNA expression were unaltered as
age advanced and OA developed (P=0.117 and 0.627,
respectively) (Table 2) suggesting that the associated
slow-twitch postural-type muscle fibres were unaffected
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Figure 1 The effect of advancing age on bodyweight (A), quadriceps mass (B) and quadriceps mass to bodyweight ratio (C). Data are
mean + SEM; n=6; * denotes P <0.05, ** denotes P <0.01, *** denotes P <0.001.
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Figure 2 Histological evidence of knee osteoarthritis on the femoral condyle (A), tibial condyle (B) and both condyles (C). Data are
modified Mankin scores; error bars denote median + interquartile range. (D) Mean serum CTX Il concentration (pg/mL); errors bars denote SEM,;
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by OA development. Similarly, MHC IIB mRNA levels,
associated with the fastest contracting muscle fibres
remained unaltered with advancing age and developing
pathology (P =0.417) (Table 2). Interestingly, MHC IIX
mRNA, associated with fast-twitch skeletal muscle fibres,
was significantly elevated at 3 months of age coincident
with the first evidence of OA (P=0.038) (Figure 3).
Furthermore, MHC IIX mRNA levels correlated positively
with the total OA grade at this time point (R* = 0.68,
P <0.05), suggesting a trend between MHC IIX expression
and disease severity. However, this relationship did not
persist across all study time points (Figure 3).

An indication of the oxidative capacity of quadriceps
skeletal muscle specimens associated with slow-twitch
muscle fibres was determined by ICDH enzyme activity.
Analysis of variance revealed a trend increase in activity

(P =0.08) with the most marked changes noted between
the ages of 2 and 3 months, and 2 and 7 months (Figure 4).
Interestingly, it was at these same time points that
increased inter-animal variation was noted in MHC I
mRNA expression (Table 2). An indication of glycolytic
activity was determined in quadriceps specimens via
the measurement of LDH enzyme activity. LDH activity
was unaffected by age or the development of OA in this
study (P =0.867) (Figure 5).

Serum RANTES expression

Elevated RANTES expression has been previously associ-
ated with active OA disease in human patients [42] and it
was therefore of interest whether RANTES was elevated
in our ageing model of OA. Circulating RANTES was
significantly elevated at 3 months of age (approximately

Table 2 Real-time PCR assessment of myosin heavy chain (MHC) isoform specific mRNAs of MHC I, MHC lla, MHC lIx

and MHC lib

Parameter 2mo 3mo 5mo 7mo P value
MHC | mRNA 0.195 +0.052 0.566 +0.362 0.034+0011 0342 +0.300 0.117
MHC lla mRNA 0.051 +0.008 0.077 £0.016 0.055+0.023 0.051 £0.009 0.627
MHC Iix mRNA 0.165 £ 0.041 0584 +0.191 0.184 + 0.094 0.237 £0.050 0.038
MHC Ilb mRNA 0.088+0.015 0.084+0.019 0.061 +0.024 0.051 +£0.009 0417

Data are mean expression units + SEM normalised to total first strand cDNA concentration; n = 6.
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Figure 3 Real-time PCR assessment of myosin heavy chain 1 (MHC IIX) isoform specific mRNA. (A) MHC IIX mRNA expression in the

quadriceps muscle of guinea pigs aged between 2 and 7 months. Data are mean expression units + SEM normalised to total first strand cDNA
concentration; n = 6; * denotes P <0.05. (B) Linear regression analysis depicting the relationship between MHC IIX mRNA expression (y-axis) and total
histological grade (x-axis) in guinea pigs at 3 months of age; n = 6. (C) Linear regression analysis depicting the relationship between MHC IIX mRNA

expression (y-axis) and total histological grade (x-axis) in guinea pigs aged between 2 and 7 months; N = 24.

3-fold the serum concentration seen at 2 months of age)
coincident with the first histological evidence of OA
P <0.05. Furthermore, serum RANTES was found to
positively correlate with total osteoarthritic grade at this
time point (R*=0.41, P=0.16). Serum RANTES concen-
tration did not correlate with any of the muscle parameters
assessed in this study. The significant elevation in serum
RANTES was maintained at 5 months of age (approxi-
mately 3-fold; P <0.05) and was still evident (although not
significant) at 7 months of age (approximately 2-fold) when
the final analyses were performed (Figure 5).

Conclusions

This is the first study to investigate molecular factors
associated with contractile and metabolic parameters of
the quadriceps femoris skeletal muscle group during
the age-associated primary onset of OA in the Dunkin
Hartley guinea pig, and to associate these changes with
the development and severity of knee OA. In order to
fully characterise the development of ageing-associated
disease, it is critical to assess the molecular and patho-
logical changes that occur during disease initiation.
This enables an understanding of the key molecular
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Figure 4 ICDH (A) and LDH (B) enzyme activity in whole quadriceps homogenates. Data are mean mOD/min normalised to total
extractable protein; n= 6. Error bars denote SEM; P values refer to one-way analysis of variance.
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Figure 5 Serum RANTES concentration (pg/mL) in guinea pigs
between the ages of 2 and 7 months. Data are mean serum
concentration (pg/mL); n = 6. Error bars denote SEM; * denotes P <0.05.
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pathways that drive disease initiation in ageing models
and permits the development of preventative therapeutics
that aim to halt disease initiation rather than ameliorate
symptoms or attempt to reverse established disease.

The histological features and timeframe of OA devel-
opment in the Dunkin Hartley strain are generally well
characterised [24-30]. Assessment of toluidine blue stained
step coronal sections from guinea pigs in this study
revealed that 2-month-old animals presented with histolog-
ically normal knee joints, whilst evidence of osteoarthritic-
like lesions was present from as early as 3 months of
age. Pathology was associated with reduced proteoglycan
staining at the joint margin and changes to articular
cartilage structure. In general, OA scores progressed
concurrent with age through until 7 months of age when
the final analyses were performed. The timing of OA initi-
ation and development and total histological scores were
concurrent with those of other published studies utilising
the same strain and joint scoring system [35].

Coincident with the initial histological evidence of
OA (at the age of 3 months), was a marked elevation in
circulating RANTES (approximately 3-fold compared
with 2-month-old OA-free animals) which was maintained
until the final analyses were performed at 7 months of
age. RANTES has been implicated in articular cartilage
degradation by the enhancement of matrix metallopro-
teinase-3 production and suppression of proteoglycan
in osteoarthritic chondrocytes [43]. Moreover, elevated
serum RANTES concentrations have been specifically
associated with active osteoarthritic disease when compared
with healthy controls and people with established, non-
active disease [43], suggesting that RANTES expression
may play a role in the initial development of OA in this
age-related disease model, similar to in humans.

Several publications report the potential utility of serum
CTX II as a biomarker of OA [44,45] and it was measured
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in this study aiming to provide a more linear measure of
OA severity than offered by traditional histopathological
scoring techniques. Surprisingly, serum concentrations of
CTX II significantly decreased as age advanced and the se-
verity of osteoarthritic lesions detected increased although
levels were concurrent with other published reports in the
same strain [46,47]. The most likely explanation for this
finding is that marked growth plate activity, associated with
normal skeletal development in young animals, contributes
significantly to the serum CTX II concentrations de-
tected. Growth plate activity has been previously asso-
ciated with markedly elevated serum CTX I
concentrations [47-49] and levels have been shown to sta-
bilise once animals reach skeletal maturity [48,49]. Growth
plate contribution to serum CTX II load is reported to con-
tribute until 6 months of age in rodents [48], 12 months of
age in rabbits, and until 25 years of age in humans [50].
Taken together, these findings highlight the need to select
skeletally-mature animals for use as spontaneous models of
OA if measurements of cartilage turnover are required.

As anticipated, advancing guinea pig age was associated
with both increased body mass and quadriceps skeletal
muscle mass, which were significantly elevated between all
of the time points studied. Although gross hypertrophic or
atrophic effects to the quadriceps skeletal muscle were ex-
cluded on the basis of an unaltered quadriceps to body
mass ratio, we sought to investigate whether any subtle mo-
lecular changes to this muscle group were associated with
the primary onset of OA and its early progression in this
model. Examination of factors indicative of contractile and
metabolic properties of the quadriceps skeletal muscle re-
vealed age-related effects on muscle fibre-type specific
mRNAs. MHC IIX mRNA was elevated at 3 months of age
(approximately 3.5-fold), coincident with the first histo-
pathological sign of OA (P <0.05); furthermore, it was posi-
tively correlated with total pathology grade at this time.
MHC IIX mRNA is associated with the expression of fast-
twitch glycolytic muscle fibres and is the second fastest
MHC isoform in many laboratory species including the
mouse, rat [51] and guinea pig [36]. Conversely, MHC IIX
is the fastest MHC isoform in the human [52], which gener-
ally lacks MHC IIB expressing muscle fibres. It is interesting
to note that the elevated expression of MHC IIX mRNA,
indicative of increased fast glycolytic muscle fibre expres-
sion, occurred at the time of OA initiation (at 3 months of
age) before returning to basal levels thereafter. This finding
could indicate altered skeletal muscle function around the
time of OA initiation. In support of this, established OA has
been previously associated with muscle fibre type changes in
man [53,54] and in surgically-induced models [55]; however,
this is the first report of such changes around the time of
OA initiation in a guinea pig ageing model of OA.

There are a number of limitations in this study. The
principal aim was to assess changes in molecular factors
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associated with skeletal muscle function in response to OA
initiation in young animals, since understanding the key
events during disease initiation in ageing models is import-
ant for the development of preventative therapeutics. How-
ever, since we studied young animals OA severity did not
progress significantly during the time course studied and
therefore further work is required using older animals over
a protracted timeframe before any conclusions can be
drawn on the potential role of sarcopenia in the progression
of OA disease. As such, our preliminary findings of muscle
changes in this ageing model of OA are predominantly ap-
plicable to early processes surrounding disease initiation.
Another potential limitation is the clinical relevance of
the guinea pig model of OA. Although, we believe this
model has many distinct advantages over surgically-
induced rodent models, several caveats must be consid-
ered when translating any findings from preclinical animal
models. Firstly, although there are many similarities to
development of OA in humans, the development of OA in
the Dunkin Hartley stain coincides with their longitudinal
growth phase. This results in significant increases in body
mass, which require careful control in time course studies.
Furthermore, longitudinal growth is associated with active
growth plate processes, negating the use of biomarkers of
OA that rely on cartilage turnover. Due to the restricted
availability of a suitable control strain which is sufficiently
similar to the Dunkin Hartley strain but age without OA
development, such studies are invariably cross-sectional,
where findings are correlated to markers of disease severity.
Nevertheless, these preliminary findings suggest, for the
first time, that initiation of OA in the guinea pig ageing
model of OA occurs independently of gross changes to
quadriceps muscle mass and that disease initiation is associ-
ated with changes in molecular factors indicative of altered
muscle contractile properties. The suggestion that muscle
quality rather than muscle mass is the primary determin-
ant of disease is pertinent and warrants further investiga-
tion, including the assessment of physiological measures of
muscle function to link our molecular observations to
changes in skeletal muscle functional output. Understand-
ing the key molecular pathways that drive disease initiation
in ageing models is essential for the development of novel
preventative therapeutics. However, such observations
should be conducted over a longer period if a relation-
ship between skeletal muscle dysfunction and sarcope-
nia with OA disease progression is to be established.

Methods

Animals, housing and study design

Male Dunkin Hartley guinea pigs (N =24) were sourced
from Charles Rivers, UK, at 6 weeks of age. Animals
were group-housed in large pens (4 m x 8 m) with free
access to standard guinea pig chow (Purina, UK) and
water. At 2, 3, 5 and 7 months of age, six animals were
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selected based upon their proximity to the median weight
of the cohort and euthanized as described below. All
animal procedures underwent ethical approval by the
University of Nottingham and were conducted in full
compliance with the Animals (Scientific Procedures)
Act, 1986.

Termination and histopathology

Animals were euthanized by intra-peritoneal injection of
pentobarbital sodium and death was confirmed by cervical
dislocation. Knee joints were obtained for histopatho-
logical analysis by making a full thickness cut 2 cm above
and below the patella. The joints were formalin fixed
and decalcified in 10% formic acid prior to processing
by routine vacuum assisted wax infiltration. Toluidine
blue stained step coronal sections were prepared at
300 pm intervals and evaluated using a histological scoring
system optimised and validated for guinea pig specimens
[35]. Pathological features at each condyle were combined
to calculate a femoral, tibial and combined OA score. The
observer was blinded to both the animal number and age
in all cases.

Biospecimens

Whole bilateral quadriceps muscle samples, inclusive of the
rectus femoris, were dissected, weighed and immediately
snap frozen in isopentane cooled with liquid nitrogen.
Care was taken to avoid inclusion of any adipose tissue
or additional muscle, most importantly the tensor fasciae
latae and sartorius, which are located within the dissected
area. Whole blood was drawn via cardiac puncture into
clot-activator tubes (Sarstedt) and serum was obtained
by centrifugation. All serum was kept at —80°C prior to
analysis.

Extraction of total RNA

Total RNA was extracted from 100 mg of sample using
TRIzol regent (Invitrogen) according to standard procedure.
Contaminating genomic DNA was removed by RQ RNase-
Free DNase I digestion (Promega) as specified by the
manufacturer’s standard instructions. The resulting total
RNA was re-suspended in molecular biology grade water
(Promega). All RNA was stored at —80°C prior to use.

Reverse transcription

First strand complementary DNA (cDNA) was reverse
transcribed from 1 pg total RNA using random hexamers
and Moloney murine leukemia virus reverse transcriptase
(MMLV) in a final volume of 25-uL as described by the
manufacturer (Promega).

Primer design
Previously published oligonucleotide primers [36] were
sourced from MWG Eurofins Operon (Table 1).
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Quantitative PCR

Quantitative PCR reactions were performed in triplicate
on 5 uL. ¢cDNA in SYBR 1 Master mix (Roche), 0.25 mM
forward and reverse primers in a final volume of 15 pL.
Cycling parameters were 95°C for 5 minutes prior to
35 cycles of 10 seconds at 95°C, 10 seconds at 55°C and
30 seconds at 72°C. Single signal acquisition was set to read
at 72°C. All reactions were run on a 384-well microplate
on a LightCycler LC480 (Roche) configured for SYBR
green determination as specified by the manufacturers.
Melt curve analysis was performed at the end of each
completed analysis run to ensure only the specific product
was amplified. All quantitative PCR data was normalised
to the total first strand cDNA concentration following
reverse transcription using OliGreen (Invitrogen).

Serum CTX Il assessment

Serum CTX II concentration was determined by a validated
enzyme linked immunosorbent assay incorporating a
monoclonal antibody specific for the neo-epitope formed
when collagen type II is degraded to form CTX II (Serum
Cartilaps, IDS, USA). Samples were processed according
to the manufacturer’s instructions using 25 pL of guinea
pig serum against standards produced from rat CTX II of
known concentrations (0-247.6 pg/mL). All samples were
analysed in duplicate and a coefficient of variation <5%
was deemed acceptable.

Skeletal muscle metabolic potential

Isocitrate dehydrogenase (ICDH) and lactate dehydrogenase
(LDH) enzyme activities were measured as an index of
oxidative (aerobic) metabolism and glycolytic (anaerobic)
metabolism, respectively. Both enzyme activities were
measured in accordance with the original method of
Brandstetter, 1998 [56].

Serum regulated upon activation, normal T-cell expressed
and secreted (RANTES) assessment

Serum RANTES expression was determined by fluorescent
enzyme-linked immunosorbent assay (ELISA) (BioRad).
Serum samples from all guinea pigs were analysed as
recommended by the manufacturer against a range of
rat cytokine standards (0-3,200 pg/mL) and a sample
dilution of 1:3, utilising a total of 30 puL of sera. All
samples were analysed (Bio-Plex 200) in triplicate, with
a coefficient of variation <5% deemed as acceptable.

Statistical analysis

All data are reported as mean * standard error of the
mean (SEM) unless otherwise specified. Comparisons
between multiple groups were performed by analysis of
variance (ANOVA) using GraphPad software V5.0 (Prism)
with Dunnett’s post hoc test (comparing all experimental
groups to the 2 month group) performed where P <0.05.
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