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The secreted protein ST00A7 (psoriasin) is
induced by telomere dysfunction in human
keratinocytes independently of a DNA damage
response and cell cycle regulators
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Abstract

(psoriasin).

telomere dysfunction and senescence.

Background: Replicative senescence is preceded by loss of repeat sequences of DNA from the telomeres that
eventually leads to telomere dysfunction, the accumulation of irreparable DNA double strand breaks and a DNA
damage response (DDR). However, we have previously reported that whilst telomere dysfunction in human
keratinocytes is associated with a permanent cell cycle arrest, the DDR was very weak and transcriptional profiling
also revealed several molecules normally associated with keratinocytes terminal differentiation, including ST00A7

Results: We show here that STO0A7 and the closely related ST00AT5 (koebnerisin) are not induced by repairable or
irreparable DSBs, ruling out the hypotheses that these genes are induced either by the low DDR observed or by
non-specific cell cycle arrest. We next tested whether ST00A7 was induced by the cell cycle effectors ARF (p14™F"),
CDKN2A (p16'NK4A) and TP53 (p53) and found that, although all induced a similar level of acute and permanent cell
cycle arrest to telomere dysfunction, none induced ST00A7 (except p53 over-expression at high levels), showing that
cell cycle arrest is not sufficient for its induction. The closely related transcript STO0AT5 was also upregulated by
telomere dysfunction, to a similar extent by p16™*** and p53 and to a lesser extent by p14*%.

Conclusions: Our results show that mere cell cycle arrest, the upregulation of senescence-associated cell cycle
effectors and DNA damage are not sufficient for the induction of the S7100 transcripts; they further suggest that
whilst the induction of STO0AT5 expression is linked to both telomere-dependent and -independent senescence,
ST100A7 expression is specifically associated with telomere-dependent senescence in normal keratinocytes. As both
ST00A7 and ST00AT15 are secreted proteins, they may find utility in the early detection of human keratinocyte
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Background

Senescence is defined as a permanent cell cycle arrest
that occurs following extensive cell divisions (replicative
senescence, RS) or more acutely following a variety of
cellular stresses (stress- or proliferation-induced senes-
cence). In addition to engaging a permanent cell cycle
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arrest, senescent cells secrete a variety of proteins known
as the senescence-associated secretory phenotype (SASP)
or senescence-messaging-secretome [1,2]. These types of
proteins are of extra interest because they may find a
use in the non-invasive detection of senescent cells in
ageing and other pathologies [3].

RS occurs following extensive rounds of cell division
and is accompanied by the erosion of the chromosomal
telomeres [4]. Telomeres are repeat sequences of DNA,
TTAGGG and their associated proteins, which are
known as the shelterin complex [5,6] and protect the
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DNA ends from being perceived by the cell as a DNA
double strand break (DSB). Telomeres will shorten when
cells divide in the absence of telomerase due to either
the end replication problem [4,7,8], exonuclease diges-
tion [9] or, in some circumstances, oxidative damage
[10,11]. This culminates in the telomere being perceived
as a DSB [12] and most senescent cells mount a significant
DDR [13]. In addition, the G-rich telomere sequences are
susceptible to oxidative damage and very inefficient at
non-homologous end-joining repair leading to a preferen-
tial accumulation of irreparable DSBs (IrrDSBs) at the
telomere [14,15]. Telomerase is deregulated in most hu-
man cancers including oral squamous cell carcinoma
(OSCC [16]) and can immortalise normal and neoplastic
keratinocytes that lack the expression of the INK4A locus
or a combination of p53 and p16™ ** proteins by length-
ening the telomeres and restoring their function [17]. Tel-
omerase has also been reported to remove the IrrDSBs at
telomeres, but it is not clear whether this property is re-
lated to its canonical telomere-lengthening function [18].

Although keratinocyte stem cells are not thought to
decrease in number during in vivo ageing [19], there is
considerable evidence that they undergo an age-related
loss of function (reviewed in [20]); as with increased
chronological age, their progeny display increased levels
of stochastic senescence in vitro [21] telomeric attrition
[22-24] and an accumulation of p16™ ** [25,26], the
last of which is reported to be inversely associated with
longevity [26].

Telomere dysfunction and its associated DDR can
be induced along with senescence by over-expressing a
dominant-negative mutant of the shelterin protein
telomere-repeat binding factor 2 (TRF2), TRF2 delta B
delta M (TRF2*%*™ or TRF2DN) [12]. However, although
this manipulation induces permanent cell cycle arrest
[27] and leads to underphosphorylated pRb (Minty and
Parkinson, unpublished data), it does not generate a
strong DDR in normal human keratinocytes, as exem-
plified by a lack of strong induction of p53 phosphoryl-
ation at serine 15, or 53BP1 foci and no detectable
increase in p21%4F [28] or SMC1-phosphoS966 or
Nbs1-phosphoS343 (Minty and Parkinson, unpublished
data). In contrast, all of these DDR markers were
induced by 8-16 gray of ionising radiation in a dose-
dependent manner and p53 stabilisation by as low a
dose as 1 gray ([28] and Minty and Parkinson, unpub-
lished data). Similar results are seen when a neoplastic
keratinocyte line, D17, lacking expression of p16™<*4
undergoes RS and telomere shortening [28]. Instead, in
both situations, we observed an induction of several
genes normally associated with keratinocyte terminal
differentiation, including HOPX and SI00A7 and other
genes not obviously related to differentiation (/CEBERG
and the histone HIST2H2BE); in D17, we also observed
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a reduction in expression of all of these genes upon
expression of telomerase in parallel with telomere
lengthening, senescence bypass and an elimination of
the very small increase in p53 phosphorylation at serine
15 [28]. As these genes showed potential as markers of
telomere dysfunction, we investigated them further.

Our earlier work stimulated the hypothesis that signals
other than DNA double strand breaks and the DDR
could be generated from dysfunctional telomeres to
increase the expression of proteins that might have diag-
nostic use. SIO0A7 was of particular interest as its
encoded protein is secreted by keratinocytes and is
found in detectable amounts in human serum where it
has found utility as a non-invasive marker of a subtype
of lung cancer [29].

Alternatively, the small DDR observed in keratinocytes
following telomere uncapping or shortening might be
enough to induce the terminal differentiation genes.
Indeed, DNA damage has been shown to contribute to
tissue ageing by the induction of terminal differentiation
[30]. To test this hypothesis, we examined the effects of
both low- and high-dose ionising radiation [28,31] on
the expression of the genes induced by telomere dys-
function and showed that SI00A7 was not increased in
expression relative to the non-irradiated controls.

Additionally, the increased expression of keratinocyte
differentiation genes could be a consequence of any
form of senescence or growth arrest. To test this hy-
pothesis and to investigate the role of the cell cycle pro-
teins involved in senescence, we ectopically expressed
ARF (p14*%F), CDKN2A (p16™%*) and TP53 (p53) in
human keratinocytes and showed that, despite similar
levels of growth arrest, these manipulations did not in-
duce the expression of SI00A7 (except for high levels of
p53), although all three induced the expression of the
S100A 1S5 (koebnerisin) gene, which is highly homologous
to S1I00A7 (psoriasin) and difficult to discriminate when
co-regulated. Their differential regulation by cell cycle
inhibitors suggests that both S100 proteins have different
functions that need to be further studied.

As the S1I00A7 protein was potentially a specific marker
of telomere dysfunction, we investigated this further and
showed it to be increased in normal keratinocytes following
the induction of telomere dysfunction by the dominant-
negative TRF2 construct TRF2*#*™,

Results and discussion

Markers of keratinocyte telomere dysfunction are not
induced by DNA double strand breaks

In order to test whether the small DDR observed follow-
ing keratinocyte telomere uncapping or shortening [28]
was responsible for the induction of HIST2H2BE, ICE-
BERG, HOPX and S100A7, we exposed normal human
keratinocytes to 2, 10 or 20 gray of ionising radiation
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(IR). All of these doses have been shown by ourselves
([28] and Minty and Parkinson, unpublished data) and
others [31] to generate a strong DDR.

The low dose of 2 gray was previously calculated to
mimic the number of DNA double strand breaks gener-
ated by the transient uncapping all 92 telomeres by
over-expressing TRF2“%™_ The 10- and 20-gray doses
induce senescence in all the keratinocytes in the popula-
tion by introducing IrrDSBs. An ionising radiation dose
of 2 gray induced p21™AF transcript and protein, sup-
porting previous data [28] that a significant DDR was
generated (Figure 1a). However, the 2-gray dose did not
reduce the levels of cyclin A2 and cyclin D1 transcript
[32] (Figure 1b) as these transcripts take longer than 6
h to reduce and did not induce the early stages of
terminal differentiation as assessed by involucrin tran-
script (Figure 1b). If anything, HIST2H2BE, ICEBERG
and HOPX levels decreased slightly, and although
S100A7/S100A15 levels increased by 40%, this was not
statistically significant (Figure 1c). Thus, the transient
levels of DNA damage induced by telomere uncapping
do not explain the previously reported induction of
HIST2H2BE, ICEBERG, HOPX and SI100A?7 transcripts
[28], excluding this as a mechanism. However, as 2-gray
irradiated cells were not growth arrested, let alone senes-
cent, we tested the hypothesis that irreparable DNA
double strand breaks, which are well known to cause sen-
escence [31], could induce HIST2H2BE, ICEBERG, HOPX
and SI00A7 transcripts. Figure 2a shows that 5 days
following irradiation, p21™*¥ transcript and both p21¥*F
and p53 proteins were elevated in keratinocytes irradiated
with both 10 and 20 gray and both doses of radiation
reduced cyclin A2 transcript and induced cyclin D1
transcript (Figure 2b), both markers of senescence [32]
and blocked keratinocyte multiplication (Figure 2c—cell
yields). There was no evidence that IR-induced irreparable
damage induced terminal differentiation as assessed by
involucrin transcript levels (Figure 2b) or by increased
colony size (data not shown), although p21¥*F expression
was greater with increased colony size at day 5 (data
not shown), consistent with the established association
of p21YAF with keratinocyte differentiation where its
expression promotes the initial commitment of kerati-
nocyte stem cell populations to differentiation [33] and
contributes to differentiation-associated growth arrest
[34]. Despite this, there was no observable induction of
any of the genes of interest 5 days after IR, except
HIST2H2BE (Figure 2d), which increased nearly twofold
in both radiation doses and was significant at 20 gray.
These experiments thus support the hypothesis that the
irreparable DNA damage at the telomere induced by
telomere uncapping could possibly be responsible for
the induction of HIST2H2BE; although at this stage,
non-specific growth arrest could not be ruled out.
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Nevertheless, these results reject the hypothesis that
the low levels of DDR engendered by telomere uncap-
ping were responsible for the induction of ICEBERG,
HOPX and S100A7/S100A1S5 expression. The results
also argue against the hypothesis that these induced
transcripts are the result of non-specific growth arrest,
an assertion supported by the next set of experiments.

The induction of permanent growth arrest by the cell
cycle effectors ARF/p14*%F, CDKN2A/p16™K*A and TP53/
p53 does not replicate the effect of TRF2452™ on the
expression of HIST2H2BE, ICEBERG, HOPX and S100A7

In order to further test the specificity of ICEBERG, HOPX
and SI00A7/S100A15 as markers of telomere dysfunction
and to test the role of the downstream senescence ef-
fector proteins in their expression, we over-expressed
p16™*A p14*RF and p53 in normal human epidermal
keratinocytes and compared them with the ectopic expres-
sion of TRF2*#*M, Figure 3a shows the effects of telomere
uncapping by the ectopic expression of TRF2*#** on the
expression of HIST2H2BE, ICEBERG, HOPX and S100A7
confirming our earlier report that TRF2**** only induces
expression of these genes at high levels of expression that
cause a growth arrest illustrated by a 40%—50% reduction
in CCNA2 expression (Figure 3b). However, none of the
classical cell cycle effectors of senescence-associated cell
cycle arrest were affected at day 5 by telomere uncapping
in human keratinocytes (Figure 3c). To test the effect of
p14*%E p16™ 4 and p53, we ectopically expressed these
transgenes in human keratinocytes and compared their
effects on HIST2H2BE, ICEBERG, HOPX and SI100A7/
SI00AI5 transcripts with TRE2*#*™, All four transgenes
caused similar changes in both CCNA2 and CCNDI
expressions within 5 days (Figures 3b, 4b and Additional
file 1: Figure S1b and Additional file 2: Figure S2b) and
similar levels of long-term growth arrest as shown by a
75% reduction in colony-forming efficiency in all groups
except p14"®Y, which caused only a 50% reduction in
colony-forming efficiency (Figure 5). The forced expres-
sion of TRF2*®"™ induced the expression of all four
candidate markers as reported previously (Figure 4a) but
did not induce the constitutive expression of any of the
other transgenes tested within 5 days (Figure 4c). p16™"**
did not induce the expression of ICEBERG, HOPX or
S100A7/S100A15 (Figures 4a and 6) showing that the
induction of a permanent growth arrest in the absence
of signals upstream of p16™*** was not enough to
cause the increased expression of the candidate markers
of telomere dysfunction-induced keratinocyte growth
arrest. However, p53 did induce increased ICEBERG ex-
pression, although somewhat inconsistently (Figure 6a,
Additional file 1: Figure Sla and Additional file 2:
Figure S2a) and p53 and p14*** induced HOPX expres-
sion and to a lesser extent HIST2H2BE (Figure 6a,
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Figure 1 Repairable levels of DNA damage do not replicate the effects of telomere uncapping in keratinocytes. NHEKs were irradiated
with 2 gray of IR and allowed 6 h to recover. Whole cell lysates were then prepared and analysed by reverse transcription quantitative PCR
(RT-gPCR) and Western blotting for the indicated transcripts and proteins, respectively. (a) p21"F transcript (graph), GAPDH, total p53 and
p21WAF proteins (blot). (b) Cyclin A2 (CCNA2), cyclin D1 (CCNDT) and involucrin (IVL) transcripts. (¢) HOPX, HIST2H2BE, ICEBERG and ST00A7
(STO0A7/S100A15) transcripts. Data are reported as a fold change in mRNA expression levels relative to the non-irradiated control (0 gray). Data
are mean + sd from three independent measurements (n = 3) in (b) and (c); in (a), only two out of the three independent measurements are
represented. Legend: GAPDH, loading control; (+) symbol, positive control for total p53 and |o21WAF proteins (SVHFK cell line); last lane loaded
with double the amount of total protein.

HOPX

Additional file 2: Figure S2a), although there is no evi-

and Additional file 2: Figure S2c). No transgene, except
dence that telomere uncapping induces high levels of

TRF2*P4M (and high levels of p53), induced SI00A7

p53 transcript (Figure 3c) or protein [28]. None of the
transgenes induced the transcription of any of the other
endogenous effectors of senescence, nor endogenous
TRF2 (Figures 3c, 4c and Additional file 1: Figure Slc

(Figure 6 transcript and protein), and for this reason, we
pursued SI00A7/S100A15 as potential biomarkers of
telomere dysfunction in the absence of DNA double
strand breaks and studied these further.
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Figure 2 Irreparable levels of DNA damage induce HIST2H2BE transcription but not HOPX, ICEBERG or S100A7 (S100A7/S100A15). NHEKs
were irradiated with 10 or 20 gray of IR and allowed 5 days to recover. Whole cell lysates were then prepared and analysed by RT-gPCR and
Western blotting for the indicated transcripts and proteins, respectively. (a) p21"*" transcript (graph), GAPDH, total p53 and p21"*" proteins
(blot). (b) Cyclin A2 (CCNA2), cyclin D1 (CCND7) and involucrin (IVL) transcripts. (c) Total number of cells in all treated groups and p27"*" and
VL transcripts in non-irradiated controls, before (day 0) and after (day 5) the recovery period. (d) HOPX, HIST2H2BE, ICEBERG and ST00A7 (S100A7/S100A15)
transcripts. Data are reported as a fold change in mRNA expression levels relative to the non-irradiated control (0 gray) in (a), (b) and (d); in (c), data
are reported as a relative fold change in mRNA expression levels between day 0 (immediately after irradiation) and day 5 (after the recovery
period). Data are mean =+ sd from three independent measurements (n = 3) in (b), (c) and (d); in (a), only two out of the three independent
measurements are represented. Asterisks (p <0.05) indicate significant change in transcript levels relative to non-irradiated cells and were
calculated by one-way ANOVA followed by Tukey's post hoc test. Legend: GAPDH, loading control; (+) symbol, positive control (SVHFK cell line); and

() symbol, negative control (BICR-6 cell line) for total p53 and p21"*** proteins.
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Figure 3 Telomere dysfunction induces HOPX, HIST2H2BE, ICEBERG and S100A7/S100A15 but not the effectors of cell senescence. NHEKs
in three independent experiments resulting in keratinocyte populations expressing TRF
LOW (12-fold), MEDIUM (15-fold) and HIGH (18-fold). Cell extracts were analysed 5 days following expression of the transgene by RT-gqPCR for

induction of transcript levels of (@) HOPX, HIST2H2BE, ICEBERG and ST100A7 (ST00A7/S100A15); (b) Cyclin A2 (CCNA2) and Cyclin D1 (CCNDT) and

and p53. Endogenous TRF2 mRNA levels were also assessed to confirm they
remain unaltered upon expression of its dominant-negative mutant TRF2252™ (TRF2DN). Data are reported as a fold increase in mRNA expression
levels relative to the respective empty vector (EV) control. Legend: EV, NHEK expressing empty vector control; DN, NHEK expressing TRF
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Distinct response of ST00A7 and ST100A15 to telomere
dysfunction and inducers of senescence

During the course of this study, the highly homologous
SI100A15 (koebnerisin) was identified as part of the
SI00A7/SI00A15 gene subfamily [35] and it became evi-
dent that the primers we had used to detect SIO0A7 also
detected the closely related SI00A 15 that, when expressed,
shows a completely different expression pattern in squa-
mous epithelia [35,36]. When specific primers were ob-
tained and used to amplify each transcript separately, we
observed that SI00A7 mRNA levels were in general about
100-fold higher than SI00A15 levels in keratinocytes (raw
data not shown; presented data reported as a fold change
relative to the relevant control) and their expression was

distinct following induction of growth arrest by telomere
uncapping and expression of the main senescence effec-
tors. SI00A7 (psoriasin) was indeed induced by telomere
dysfunction but not by p16™**, p14**F or p53 (induced
by 1.6-fold with high levels of p53 but by 2.6-fold
with high levels of TRF2***"_Figure 7a). In contrast,
S100A15 (koebnerisin) was induced by the ectopic expres-
sion of p16™** and p53 to a similar level to telomere un-
capping and p14*®* to a lesser extent (Figure 7a). Also,
whilst SI00A15 was only induced by MEDIUM/HIGH
expression levels of TRF2***M, SI00A7 transcript was
elevated even by a LOW expression of TRE2***M, je. to
levels incapable of engaging permanent growth arrest.
Thus, SIO0A7 seems to respond to even mild telomere
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Figure 4 Transcriptional profile of populations of normal human epidermal keratinocytes expressing p16™**A, NHEKs were transduced
with p16™“* in three independent experiments resulting in keratinocyte populations expressing p16™<* at different levels: LOW (18-fold),
MEDIUM (60-fold) and HIGH (116-fold). Cell extracts were analysed 5 days following expression of the transgene by RT-gPCR for induction of
transcript levels of (a) HOPX, HIST2H2BE, ICEBERG and ST00A7 (ST00A7/S100A15); (b) Cyclin A2 (CCNA2) and Cyclin D1 (CCNDT) and (c) effectors
of senescence-associated cell cycle arrest p14*%, p16™“" and p53. Data are reported as a fold increase in MRNA expression levels relative to the
respective empty vector (EV) control. Legend: EV, NHEK expressing empty vector control; p16, NHEK expressing p16™<*.

dysfunction, which suggests not only better specificity
than SI00AI5 but also increased sensitivity to telomere
damage. We also show that the elevation of either SI00A7
or S1I00A15 was not merely a result of non-specific growth
arrest since neither transcript was induced by repairable
(Figure 7b) nor irreparable (Figure 7c) DNA double strand
breaks. These results suggest that whilst the early increase
in S1I00A7 expression could be a specific consequence of
telomere dysfunction in keratinocytes, the increase in
SI00A15 expression may be a more general consequence
of permanent growth arrest.

We previously reported that inducing telomere dysfunc-
tion in newborn human keratinocytes induced growth
arrest and increased the expression of several genes,

HIST2H2BE, ICEBERG, HOPX and S100A7, within 5 days,
despite eliciting a very weak DDR that is typical of most
cell types [28]. HIST2H2BE, ICEBERG, HOPX and
SI00A7 were also expressed when a p16™***_deficient
dysplasia line (D17) underwent replicative senescence and
telomere shortening in the absence of a strong DDR, and
these four transcripts were shown to be reduced upon the
ectopic expression of the catalytic component of telomer-
ase, telomere lengthening and elimination of the weak
DDR [28].

The above experiments suggested that the four candi-
date genes HIST2H2BE, ICEBERG, HOPX and SI00A7
could be highly specific and early markers of keratinocyte
telomere dysfunction, but several questions remained
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Figure 5 Colony-forming efficiency analysis of NHEK transduced with p14°%f, p16™*4, p53 and TRF2"5M, NHEKs were transduced with
amphotropic retroviral particles using spinfection and, 48 h later, trypsinised and seeded at clonal density (7 x 10 cells per 6-well plate). Cells
were cultured for 2 weeks under drug selection and finally fixed and stained with Rhodamine B to reveal keratinocyte colonies. Colony-forming
efficiency, displayed as percentage and relative to the respective EV control, was calculated by dividing the total number of colonies obtained per
well by the total number of cells seeded per plate (7,000). Photos show wells representative of the results obtained for each construct. Legend:
GFP, empty vector control for p74ARF, p76/NK4A and p53; EV, empty vector control for TRF2BAM (DN). This is the result of a single experiment.

unanswered. For instance, it was possible that keratino-
cytes were unusually sensitive to the DDR, and that the
weak DDR we observed was enough to induce the tran-
scription of HIST2H2BE, ICEBERG, HOPX and S100A7.
To test this, we subjected keratinocytes to both a low dose
(2 gray) of y irradiation that had been calculated to simu-
late the uncapping of 92 telomeres, and higher doses (10
or 20 gray) that had been reported to induce human cellu-
lar senescence and a strong DDR [28]. However, only
HIST2H2BE was shown to be induced by y irradiation.
This is consistent with recent reports showing that chro-
matin components, such as H2A and H2B histones, are
actively involved in the response to DNA damage [37,38].
HIST2H2BE is thus an active participant in the DDR and

not a specific marker of telomere dysfunction-induced
keratinocyte permanent growth arrest. In contrast, /CE-
BERG, HOPX and S100A7 were not induced even by a
strong DDR or indeed permanent growth arrest.

To further test the specificity of ICEBERG, HOPX and
S100A7 to telomere dysfunction, we induced permanent
growth arrest in a different way: by the ectopic expres-
sion of the transcripts encoding the cell cycle inhibitors
p14*%E p16™*4 and p53. This experiment had the dual
purpose of testing the specificity of the above genes
and also whether the cell cycle effectors were sufficient
to induce them. The expression of p53 and p14**F did
induce ICEBERG expression, although the effect of p53
was highly variable, and p53 induced HOPX. The result
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with p53 is a little difficult to reconcile with the absence
of the induction of ICEBERG and HOPX following y
irradiation, but we have consistently failed to observe a
large increase in total p53 protein in human keratino-
cytes following vy irradiation or telomere dysfunction
and so the induction of ICEBERG and HOPX by p53
may be limited to situations such as UV exposure where
p53 is stabilised and strongly over-expressed in human
keratinocytes [39].

However, no transgene, except TRF2‘**, induced
SIO0A7 expression, and for this reason, we pursued
SIO0A7 as a potential early biomarker of telomere dys-
function in the absence of DNA double strand breaks.
This result is also similar to that obtained for several SASP
proteins, which are also not induced by the ectopic ex-
pression of the cell cycle regulator and effector of senes-
cence, p16™** [40]. SI00A7 was over-expressed both at
the transcript and protein level following telomere uncap-
ping by ectopic expression of TRF2*#*V,

TRF2 has been reported to be over-expressed in both
basal and squamous cell carcinomas of the skin [41] and
very recently has been shown to regulate the recruit-
ment of natural killer cells by a cell extrinsic mechanism
[42]. However, our earlier work showed that whilst the
over-expression of TRF2 at high levels did cause kera-
tinocyte growth arrest it induced a distinct gene expres-
sion profile from TRF2**4™ that did not include SI00A7
(Minty et al, unpublished data). These data argue
against our results being the consequence of TRF2 over-
expression as opposed to telomere uncapping.

During the course of the study, we became aware that
the primers used to detect SIOOA7 (psoriasin) also de-
tected a closely related gene S100A15 (koebnerisin).
Koebnerisin, unlike psoriasin, is expressed in the epider-
mal basal layer and in cell types other than keratino-
cytes. However, when we used specific primers for
SI00A7 and S100A15 transcripts, we found that the
major S100 transcript specifically induced by telomere
dysfunction was SI00A7 and that the expression of
SI00A15 was very low. However, interestingly S100A15
did seem to also be induced by the ectopic expression of
p16™ 4 and p53; p16™ * is over-expressed in senes-
cent keratinocytes in vitro [43] and increases in the epi-
dermis of elderly humans [25,26] where it is also
inversely associated with long-lived families [26] and it
will be interesting to test whether SI00A15 follows a
similar expression pattern to pl16™<** in the epidermis
of elderly subjects.

S$100 proteins can participate in the squamous epithelial
barrier as part of the cornified envelope, and S100A15
(koebnerisin) and S100A7 (psoriasin) both attracted inter-
est because of their association with psoriasis. When re-
leased into the extracellular space, they synergise to
participate in the innate immune response by acting as
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antimicrobial agents and by acting as chemoattractants for
auxiliary immune cells and act as pro-inflammatory cyto-
kines to amplify the immune response [44]. In normal
skin, S100A7 (psoriasin) and S100A15 (koebnerisin) are
both expressed by terminally differentiated keratinocytes
of the upper epidermis, which are not replicative [36]. In
contrast to psoriasin, koebnerisin is also produced by most
cells in the basal epidermal layer, which might reflect the
fact that most of the basal keratinocytes are non-dividing.
Thus, koebnerisin could be a negative marker of replicat-
ing epidermal stem cells in the skin, which requires fur-
ther investigation.

S100A7 (psoriasin) is upregulated in the early stages of
tumour progression, where in its cytoplasmic form it
has been reported to inhibit beta catenin signalling
and act as a tumour suppressor in both breast epithelial
cells [45] and keratinocytes [46]. S1I00A7 is downregu-
lated when premalignant keratinocytes bypass senes-
cence and is downregulated in the invasive parts of
tumours iz vivo. In contrast, in its secreted form, SI00A7
binds to the receptor of advanced glycation endproducts
(RAGE) on neighbouring tumour cells and can activate
nuclear factor kappa B [47] and hence possibly mem-
bers of the SASP [48] in neighbouring cells, including
matrix metalloproteinases [49] and a variety of cyto-
kines and other molecules [1]. Thus, SI00A7 may medi-
ate the effects of telomere dysfunction by first acting
as a tumour suppressor intracellularly but may also act
as a keratinocyte-specific SASP protein that can also
spread its effects to neighbouring cells and as such may
modulate to both ageing and tumour progression.

S100A7 protein is also detectable in human serum and
as such might turn out to have potential as a non-
invasive marker of keratinocyte telomere dysfunction in
human ageing and disease. Indeed, serum S100A7 pro-
tein levels have been reported to be associated with
squamous and large cell carcinomas of the lung in a cell
type-specific manner [29]. The association of S100A7
protein with squamous cell carcinoma is something of a
paradox as these cancers would very likely have deregu-
lated telomerase [16] and reduced telomere dysfunction
[50] in the immortal cells of the tumour. Furthermore,
we have previously reported that the ectopic expression
of telomerase in p16™ " **_deficient dysplastic keratino-
cytes can reverse the upregulation of SI00A7 following
telomere attrition and senescence [28]; also, many
telomerase-positive immortal keratinocyte lines have re-
duced levels of SI00A7 transcript (Hunter, Thurlow and
Parkinson - unpublished data). However, significant levels
of anaphase bridges and very short average telomere
lengths have been reported in many human cancers, in-
cluding squamous cell carcinomas [50,51], suggesting that
considerable telomere dysfunction exists in portions of
these telomerase-positive tumours.
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At present, we can only speculate on the mechanism by
which telomere uncapping upregulates SI00A7, but recent
data has suggested that the S100 proteins can be positively
regulated by the histone demethylase JMJD3 in foetal hu-
man keratinocytes by repressing the H3K27me3 marks
[52], and the histone demethylase LSD1 is required for
estrogen-dependent S100A7 gene expression in human
breast cancer cells [53]. Interestingly, telomere shortening
and uncapping in telomerase-deficient mice also downre-
gulates H3K27me3 and globally derepresses the genome
[54], and therefore, the regulation of chromatin by telo-
mere uncapping may offer a potential explanation for our
results and the observation that telomerase can affect or-
ganismal ageing and healthspan when targeted only to epi-
thelia as secreted proteins from cells with short telomeres
could influence other organs in a paracrine manner [55].

Conclusions

In summary, we have shown here that several gene tran-
scripts (ICEBERG, HOPX, S100A7 and S100A1S) are
upregulated following telomere uncapping in human
keratinocytes independently of the DDR, and in the case
of SI00A7, this was also independent of cell cycle effec-
tors such as p16™<**, suggesting that the secreted form
of SI00A7 is a keratinocyte-specific SASP with the po-
tential to non-invasively detect keratinocytes with dys-
functional telomeres.

Methods

Cell culture

Normal human epidermal keratinocytes, strain NHEK-131
(GIBCO-Invitrogen, Paisley, UK), were derived from a
pool of a minimum of three neonatal foreskins and
obtained at 6.8 mean population doublings (MPDs). Kera-
tinocytes were cultured at 37°C in a 10% CO,/90% air
with lethally irradiated 3T3 feeder cells in flavin-adenine
enriched medium (FAD"). FAD™ consists of 3 parts DMEM
4.5 g/L glucose (Lonza, Slough, UK), 1 part Ham’s F12
(Lonza), 10% (v/v) Hyclone Fetalclone II serum (Fisher
Scientific, Loughborough, UK), 20 mM HEPES buffer
(Lonza), 100 U/ml penicillin, 100 U/ml streptomycin
(Lonza) and 2 mM L-Glutamine (Lonza), supplemented
with 1.8x10™* M Adenine (Sigma-Aldrich, Poole,
Dorset, UK), 5 pg/ml insulin (Sigma-Aldrich), 5 pg/ml
transferrin  (Sigma-Aldrich), 0.4 pg/ml hydrocortisone
(Sigma-Aldrich) and 8.4 ng/ml cholera toxin (Fisher
Scientific, Loughborough, UK). Medium was replenished
every third or fourth day with FAD" complete medium,
which consists of FAD™ supplemented with 10 ng/ml of
epidermal growth factor (Sigma-Aldrich).

Irradiation
Cells were irradiated using a GSR D1 Cs-137 low dose-
rate gamma irradiator (GSM, Leipzig, Germany) at 1.493
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gray/min for 1 min 20 s for a total dose of 2 gray with a
recovery period of 6 h or at 1.493 gray/min for 13 min
23 s for a total dose of 20 gray and 0.747 gray/min for
13 min 23 s for a total dose of 10 gray, both with a re-
covery period of 5 days.

Retroviral transduction

Retroviral vectors pLPC-N MYC (12540 Addgene, Cambridge,
MA.) and pLPC-NMYC TRF2** (16069 Addgene) were
donated by Titia de Lange (Rockefeller University, NYC,
USA); pBABE-puro p14**, pBABE-puro p16™** and
pBABE-puro p53 were donated by Gordon Peters (London
Research Institute, CRUK, London, UK); and pBABE-
puro GFP was donated by Cleo Bishop (Blizard Institute,
QMUL, London, UK). Vector DNA was amplified in XL1-
Blue Competent Cells (Stratagene, La Jolla, CA, USA) and
purified with the Plasmid DNA purification Maxi kit
(Qiagen, Manchester, UK) according to manufacturer’s in-
structions. Retroviral supernatants were produced by trans-
fecting plasmid DNA into Phoenix A packaging cells
(Nolan Labs, Stanford, USA) using FUGENE’6 transfection
reagent (Roche) at a 1 pug DNA to 2.5 pl FUuGENE’6 ratio.
Next, amphotropic supernatants were used to infect
keratinocytes (after removing feeders) with two con-
secutive rounds of centrifugation at 300 rpm for 1 h at
32°C (spinfection), 6 h apart, in the presence of 5 ug/ml
polybrene (Sigma-Aldrich) to facilitate viral uptake. Retro-
viral supernatant was replaced with FAD medium and
transduced keratinocytes were kept under normal culture
conditions in the presence of irradiated 3T3 ‘feeders’.
Mock-transduced plates were treated with polybrene only.
Puromycin (Sigma-Aldrich) selection (1 pg/ml) was intro-
duced 24 h later and kept for 72 h following the 24-h
period allowed for gene expression at which point the
mock plates were dead. Selective medium was then re-
placed with FAD overnight and cell pellets collected by
centrifugation.

qPCR

Extraction of total RNA was performed using the RNeasy
Mini Kit (Qiagen) according to manufacturer’s instruc-
tions, including sample homogenisation with QIAshredder
(Qiagen) and DNase treatment with the RNase-free
DNase Set (Qiagen). Purified RNA was reverse transcribed
using with Finnzymes DyNAmo™ c¢DNA Synthesis Kit
(New England BioLabs, Hitchin, UK) and the c¢DNA
stored at —20°C. RT quantitative real-time PCR (absolute
copy number quantification using standard curve for
each gene) was performed using SYBR® green I Master
(hot-start Taq polymerase master mix) in the LightCycler
480" qPCR system (Roche Applied Science, Welwyn
Garden City, Herts., UK). Target gene relative expression
levels were calculated in relation to keratinocyte reference
genes POLR2A and YAPI [56] using the LightCycler 480°
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Relative Quantification Software (with built-in multiple
reference genes normalisation algorithm).

Primers used were, CCNA2 fwd CCATACCTCAAGTA
TTTGCCATC and CCNA2 rev TCCAGTCTTTCGTATT
AATGATTCAG for CCNA2 cyclin A2 [GenBank: NM_
001237.3]; CCND1 fwd CGTGGCCTCTAAGATGAAGG
and CCND1 rev GTGTTCAATGAAATCGTGCG for
CCNDI cyclin D1 [GenBank: NM_053056.2]; HIST2H2BE
fwd GGTAGATCCACCCTTATGCTT and HIST2H2BE rev
TTAAGAGGGGAACACCATGAG for HIST2H2BE histone
cluster 2, H2be [GenBank: NM_003528.2]; HOPX fwd
ACTTCAACAAGGTCGACAAGC and HOPX rev GG
GTCTCCTCCTCGGAAA for HOPX HOP homeobox
[GenBank: NM_139212.3; GenBank: NM_032495.5;
GenBank: NM_001145460.1; GenBank: NM_001145
459.1; GenBank: NM_139211.4]; ICEBERG fwd CTTG
CTGGATTGCCTATTAGAG and ICEBERG rev TTGA
GGGTCTTCTTCACAGAG for CARDIS8 caspase re-
cruitment domain family, member 18 [GenBank: NM _
021571.2]; IVL fwd TGCCTGAGCAAGAATGTGAG
and IVL rev TTCCTCATGCTGTTCCCAGT for IVL
involucrin [GenBank: NM_005547.2]; pléLARP fwd CTA
CTGAGGAGCCAGCGTCTA and p14**F rev CTGCC
CATCATCATGACCT for CDKN2A cyclin-dependent
kinase inhibitor 2A, variant 4 or beta [GenBank: NM_
058195.2]; pl16™* fwd CCAACGCACCGAATAGT
TACG and p16™** rev GCGCTGCCCATCATCATG
for CDKN2A cyclin-dependent kinase inhibitor 2A,
variant 1 or alpha [GenBank: NM_000077.3]; p21%4F!
fwd TCACTGTCTTGTACCCTTGTGC and p21YAH
rev GGCGTTTGGAGTGGTAGAAA for CDKNIA cyclin-
dependent kinase inhibitor 1A [GenBank: NM_000389.3;
GenBank: NM_078467.1]; p53 fwd AGGCCTTGGAACT
CAAGGAT and p53 rev CCCTTTTTGGACTTCAGGTG
for TP53 tumour protein p53 [GenBank: NM_000546.4;
GenBank: NM_001126114.4; GenBank: NM_0011261
13.1; GenBank: NM_001126112.1; GenBank: NM_001
126115.1; GenBank: NM_001126116.1; GenBank: NM_
001126117.1]; POLR2A fwd GCAAATTCACCAAGA
GAGACG and POLR2A rev CACGTCGACAGGAAC
ATCAG for POLR2A polymerase (RNA) II (DNA di-
rected) polypeptide A [GenBank: NM_000937.3]; SI00A7
fwd AGACGTGATGACAAGATTGAC and S100A7 rev
TGTCTTTTTTCTCAAAGACGTC for SI00A7 S100
calcium-binding protein A7 [GenBank: NM_002963.3];
S100A15 fwd ACGTCACTCCTGTCTCTCTTTACT and
S100A15 rev TGATGAATCAACCCATTTCCTGGG for
SI00A7A S100 calcium-binding protein A7A [GenBank:
NM_176823.3]; and S100A7/S100A15 fwd AAAGCA
AAGATGAGCAACAC and SI100A7/S100A15 rev AA
GTTCTCCTTCATCATCGTC for co-amplification of
both; TRF2 fwd CCAGATGAAGACAGTACAACCAA
and TRF2 rev CCAGTTTCCTTCCCCATATTT for TERF2
telomeric repeat binding factor 2 [GenBank: NM_005652.2];

Page 12 of 14

TRE2DN fwd GTTGATTTCTGAAGAAGATTTGTT
and TRF2DN rev GTGGAAGTAGAACTTGAGCAC for
TRF2*%*M; YAP1 fwd CCCAGATGAACGTCACAGC and
YAP1 rev GATTCTCTGGTTCATGGCTGA for YAPI
Yes-associated protein 1 [GenBank: NM_000389.3; Gen-
Bank: NM_078467.1]. SIO0A7/S100A15 primers [28] amp-
lifty highly homologous transcripts for SI00A7 (psoriasin)
and S100A15 (koebnerisin). S100A7-specific and SI00A15-
specific primers were designed to independently quantify
each transcript [57]. HOPX primers were designed to
amplify all five transcript variants described for this gene.
The design of a specific primer set for amplification of
exogenous TRE2*#*M was performed manually, the forward
sequence directed at the myc tag (located upstream of the
gene insert) and the reverse sequence targeting the
TRF2*P*™ transgene in the retroviral construct. We have
validated that all primer pairs are highly specific for the
expected product without cross-amplification. All qPCR
results were repeated as three complete experiments with
two to three replicates each unless otherwise stated.

Western blotting

Cells were lysed with M-PER® Mammalian Protein
Extraction Reagent (Thermo Scientific) and cOmplete
Mini EDTA-free protease inhibitor cocktail tablets
(Roche). Mixture was gently shaken for 10 min at room
temperature and cell debris removed by centrifugation
at 14,000 g for 15 min. Supernatant was collected and
kept on ice before being stored at —-80°C. Protein
concentration in the cell lysates was measured using
the DC™ Protein Assay (BioRad, Hertfordshire, UK).
Protein samples for Western blotting were prepared by
adding 1x NuPAGE® LDS Sample Buffer (Life Tech-
nologies) followed by denaturation for 5 min at 100°C.
Proteins were loaded onto NuPAGE® 10% Bis-Tris pre-
cast resolving gels (Invitrogen) and separated by gel
electrophoresis at 130 V on 1x NuPAGE® running buf-
fer (Invitrogen). Transfer to Immobilon™ PVDF mem-
branes (Millipore, Watford, UK) was performed on
transfer buffer (25 mM Tris, 190 mM glycine and 20%
methanol) at 30 V for 90 min at 4°C. Membranes were
blocked in 5% non-fat milk in Tris-buffered saline/
Tween® 20 (TBS-T: 1 M Tris, pH 8.0; 5 M NaCl; 0.1%
Tween® 20) for 1 h at room temperature. Next, mem-
branes were probed with primary antibodies in 5%
non-fat milk in TBS-T overnight at 4°C followed by
incubation with HRP-conjugated secondary antibodies,
prepared in 5% non-fat milk in TBS-T, for 1 h at room
temperature. Immunodetection was performed with
Amersham™ ECL Plus chemiluminescent detection
system (GE Healthcare Life Sciences) and visualised on
Amersham™ ECL Hyperfilm (GE Healthcare Life Sciences,
Chalfont St. Giles, Bucks, UK). Primary antibodies used
were mouse monoclonal anti-human p21%¥4f! (C70) at
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1:250 dilution (610233 BD Transduction Labs), mouse
monoclonal anti-human p53 (DO-1) at 1:250 dilution
(sc-126 Santa Cruz Biotechnology, CA), mouse monoclonal
anti-human psoriasin/HID5/S100A7 at 1:1,000 dilution
(IMG-409A Imgenex, San Diego, CA) and rabbit polyclonal
anti-human GAPDH at 1:1,000 dilution (ab9485 Abcam
Cambridge, UK). Secondary antibodies used were poly-
clonal goat anti-mouse IgG HRP-conjugated at 1:2,500
dilution (Fisher Scientific) and polyclonal goat anti-rabbit
IgG HRP-conjugated at 1:2,500 dilution (Fisher Scientific).
In the UK commercially derived human cells are not
subject to further ethical approval by the purchaser and
once passaged they are regarded as a cell line and exempt.

Additional files

Additional file 1: Figure S1. Transcriptional profile of populations of
normal human epidermal keratinocytes expressing p14*"". NHEKs were
transduced with p14™" in three independent experiments resulting in
keratinocyte populations expressing p14*™ at different levels: LOW (89-fold),
MEDIUM (142-fold) and HIGH (220-fold). Cell extracts were analysed 5 days
following expression of the transgene by RT-qPCR for induction of transcript
levels of (a) HOPX, HIST2H2BE, ICEBERG and ST00A7 (STO0A7/S100A15);
(b) Cyclin A2 (CCNA2) and Cyclin D1 (CCNDT) and (c) effectors of
senescence-associated cell cycle arrest p14**, p16™“** and p53. Data
are reported as fold increase in mRNA expression levels relative to the
respective empty vector (EV) control. Legend: EV, NHEK expressing
empty vector control; p14, NHEK expressing p14°%F.

Additional file 2: Figure S2. Transcriptional profile of populations of
normal human epidermal keratinocytes expressing p53. NHEKs were
transduced with p53 in three independent experiments resulting in
keratinocyte populations expressing p53 at different levels: LOW (10-fold),
MEDIUM (7-fold) and HIGH (29-fold). Cell extracts were analysed 5 days
following expression of the transgene by RT-qPCR for induction of
transcript levels of (a) HOPX, HIST2H2BE, ICEBERG and ST00A7 (S100A7/
ST00A15); (b) Cyclin A2 (CCNA2) and Cyclin D1 (CCNDT) and (c) effectors
of senescence-associated cell cycle arrest p14*™, p16™* and p53. Data
are reported as fold increase in mRNA expression levels relative to the
respective empty vector (EV) control. Legend: EV, NHEK expressing empty
vector control; p53, NHEK expressing p53.
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DDR: DNA damage response; DMEM: Dulbecco’s modified Eagle’s medium;
DSB: DNA double strand break; FAD: flavin-adenine enriched medium;
GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HRP: horseradish
peroxidase; irrDSB: irreparable DNA double strand break; MPD: mean
population doubling; NHEK: normal human epidermal keratinocyte;

OSCC: oral squamous cell carcinoma; RS: replicative senescence;

SASP: senescence-associated secretory phenotype; TRF2 or TERF2: telomeric
repeat binding factor 2; TRF2DN or TRF2252M: dominant-negative TRF2

or TRF2 delta B delta M.
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