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Abstract

Ageing impacts negatively on the development of the immune system and its ability to fight pathogens.
Progressive changes in the T-cell and B-cell systems over the lifespan of individuals have a major impact on the
capacity to respond to immune challenges. The cumulative age-associated changes in immune competence are
termed immunosenescence that is characterized by changes where adaptive immunity deteriorates, while innate
immunity is largely conserved or even upregulated with age. On the other hand, ageing is also characterized by
“inflamm-ageing”, a term coined to explain the inflammation commonly present in many age-associated diseases.
It is believed that immune inflammatory processes are relevant in Alzheimer’s disease, the most common cause of
dementia in older people. In the present paper we review data focusing on changes of some immunoinflammatory
parameters observed in patients affected by Alzheimer’s disease.

Keywords: Immunosenescence, Alzheimer’s disease, Inflammation, Cytokine, Chemokine, Lymphocyte, Ageing
Review
Ageing and the immune system
During the past century, humans have gained more years
of average life expectancy than in the last 10,000 years.
Currently, people are living much longer than they used
to; and the longer they live, the longer their bodies are
exposed to environmental factors that increase the risk
of age-associated diseases. The reduction of the response
to environmental stimuli is associated with an increased
inclination towards illness and death. In western coun-
tries, the mortality rate increases in people over 65 years
old, if compared with younger individuals, by 100-fold
for stroke or chronic lung disease, by 92-fold for heart
disease, by 89-fold for influenza and correlated pneumo-
nia infections, and by 43-fold for cancer [1]. Ageing
is the consequence of the collapse of self-organizing sys-
tems and reduced ability to adapt to the environment,
and it has been suggested that normal human ageing
is associated with a loss of complexity in a variety of
anatomic structures and physiological processes [2].
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These losses lead to physical inability, impaired mental
functional capacity and organ and apparatus deregula-
tion [3], with the consequence of increased susceptibility
to diseases and death. On the contrary, healthy ageing
seems directly correlated with a good functioning of the
immune system, suggesting that it is related to both en-
vironmental factors and genetic background. Indeed,
many studies have focused on genetic determinants of
longevity in genes regulating the immune-inflammatory
response [4-7].
Ageing impacts negatively on the development of the

immune system and its ability to function. Progressive
changes in the T-cell and B-cell systems over the lifespan
of individuals have a major impact on the capacity to
respond to immune challenges. These cumulative age-
associated changes in immune competence are termed
immunosenescence. According to the remodeling theory
of ageing proposed several years ago [8], the current
data on human immunosenescence describe a complex
scenario where adaptive immunity deteriorates, while in-
nate immunity is largely conserved or even up-regulated
with age. Under an evolutionary perspective, antigens are
the cause of a persistent lifelong antigenic stress, respon-
sible for the accumulation of effector CD8+/CD28- T cells,
the decrease of naïve T lymphocytes (CD45RA+CD62L+)
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and the marked shrinkage of the T-cell repertoire with
age [9-14]. The humoral compartment is also affected in
the aged [15-20]; indeed, B-cell numbers are decreased
and the B-cell repertoire is influenced by ageing through
the quality of antibody response [21-25], and this
decreased B-cell diversity is associated with poor health
status [26-28]. Immunosenescence is thus not a random
deteriorative phenomenon, as was hypothesized in 1989
in “the network theory of aging”, but could be envisaged
as the result of the continuous challenge of the unavoid-
able exposure to a variety of potential antigens such as
viruses and bacteria, but also food and self-molecules
among others [12,13,29-31].
Immunosenescence therefore materially contributes to

the decreased ability of the older person to control infec-
tious diseases, which is also reflected in the observed
poor response to vaccination [25,32-34]. In recent years,
the idea of the immunological risk phenotype (IRP) that
includes some immunological parameter changes that
predict survival has been suggested [35-37]. A good im-
mune system in the older person is tightly correlated to
health status, and, as aforementioned, some immuno-
logical parameters are often markedly reduced in these
subjects (Table 1). On the contrary, infectious diseases,
cancer, autoimmune diseases and inflammatory chronic
diseases such as atherosclerosis, heart diseases and
Alzheimer’s disease (AD) are frequent in this phase of
life [38]. Indeed, much experimental and clinical evi-
dence has suggested that the immune system is impli-
cated, with a variable degree of importance, in almost all
age-related or associated diseases.
Ageing is accompanied by a chronic low-grade inflam-

matory state demonstrated by the increased serum levels
of inflammatory mediators such as cytokines and acute
phase proteins in the aged [39,40]. The most important
role in this basal pro-inflammatory status in the
older person seems to be played by chronic antigenic
stress, which, interacting with the genetic background,
potentially triggers the onset of age-related inflammatory
diseases [6,7,41]. The inflammatory process is a physio-
logical phenomenon that is necessary for the elimination
of pathogenic viruses or bacteria, but the prolonged
period to which aged people are exposed may lead to
chronic inflammation that inevitably damages several
organs. Chronic inflammation appears to be involved in
the pathogenesis of all age-related diseases such as AD,
atherosclerosis, diabetes, sarcopenia and cancer [4,42-47].

Inflammation, Alzheimer’s disease and immune response
AD is the most common cause of dementia in older
people and it is estimated that 27 million people are
affected worldwide [48,49]. As the life expectancy of the
population increases, the number of affected individuals
is predicted to triple by 2050 [49,50]. Age is therefore
the main risk factor in AD, although early-onset disease
can occur before age 60. AD may not be an inevitable
occurrence of the aging process, but it is a disease with
significant genetic roots. Indeed, genetics is important
not only in predicting susceptibility but also the age of
disease onset in the older person [51]. Other important
risk factors are environmental events in early life as well
as childhood IQ [52] and gender. In most studies,
women were found to be at greater risk for AD. How-
ever, it is not clear whether this effect is due to genetic
or hormonal differences between males and females or
whether it is a surrogate marker of other still unmeas-
ured socioeconomic factors [53].
AD is a progressive brain disorder affecting regions of

the brain that control memory and cognitive functions.
The two major neuropathologic hallmarks of AD are
extracellular amyloid-beta (Aβ) plaques and intracellular
neurofibrillary tangles. The production of Aβ, a decisive
event in AD, is the result of the cleavage of amyloid
precursor protein (APP), whose levels are high in AD.
APP has important developmental functions in cell

differentiation and in the organization of synapses [54].
According to the Aβ hypothesis, AD begins with the ab-
normal processing of APP. Proteolysis of extracellular
domains by sequential β-secretases and γ-secretases
results in a family of peptides that form the β-amyloids
(Aβ). Among these Aβ peptides, the more insoluble
(Aβ42) has a propensity for self-aggregation into fibrils
that form the senile plaques characteristic of AD path-
ology. Neurofibrillary tangles are composed of the tau-
protein and in healthy neurons are integral components
of microtubules, while in AD tau-protein becomes
hyperphosphorylated and this phenomenon leads to the
tangles binding to each other and forming tangled
threads [55].
Brain inflammation is a pathological hallmark of AD,

and we know that inflammation is a response to elimin-
ate both the initial cause of cell injury as well as the nec-
rotic cells and tissues resulting from the original insult.
If tissue health is not restored, inflammation becomes
a chronic condition that continuously erodes the sur-
rounding tissues [55]. Inflammation clearly occurs in
pathologically susceptible regions in brain AD, with
increased expression of acute-phase proteins and pro-
inflammatory cytokines [6,7,49,56-58]. The cells re-
sponsible for the inflammatory reaction are microglia,
astrocytes, and neurons. These activated cells produce
high levels of inflammatory mediators such as pro-
inflammatory cytokines and chemokines, prostaglandins,
leukotrienes, thromboxanes, coagulation factors, free
radicals as reactive oxygen species and nitric oxide,
complement factors, proteases and protease inhibitors,
and C-reactive protein [49,58]. The hypothesis is that
Aβ plaques and tangles stimulate a chronic inflammatory



Table 1 Modifications of T-cell and B-cell systems in older humans

T cells and B cells or B-cell products Lymphocyte subpopulations Change Reference

CD3+, CD3+CD4+, CD3+CD8+ Total T cells, T helper cells, Decrease [9]

(percentage and absolute number) cytotoxic T lymphocytes [14]

CD3+CD45RA+CD62L+ Naïve T cells Decrease [10]

(percentage) [11]

[12]

[13]

CD8+CD28- Effector T cells Increase [10]

(percentage) [11]

[12]

[13]

CD19+ Total B cells Decrease [24]

(percentage and absolute number) [25]

[16]

[17]

[18]

CD19+CD5+ B1 cells Decrease [15]

(percentage and absolute number)

CD19+IgD+CD27– Naïve B cells Decrease [19]

(percentage)

CD19+IgD-CD27– Double Negative B cells Increase [19]

(percentage) [24]

[20]

IgG, IgA Increase [21]

No change [22]

IgD, IgM Decrease [21]

IgE No change [21]

(after specific immunization) [22]

Decrease [23]

Autoantibodies Increase [27]

[26]
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reaction [59]. Inflammatory mediators, in turn, enhance
APP production and the amyloidogenic processing of
APP to induce Aβ42 peptide production. These circum-
stances also inhibit the generation of a soluble APP frac-
tion that has a neuroprotective effect [60,61]. On the
contrary, Aβ induces the expression of pro-inflammatory
cytokines in glial cells in a vicious cycle [62,63].
To date, the timing with which neuroinflammation is

believed to influence AD is unknown. In particular, clin-
ical and experimental evidence from different transgenic
models has suggested that a pro-inflammatory process
might precede plaque deposition [64]. A recent paper
correlates the increased levels of C-reactive protein with
the formation of senile plaques [65]. C-reactive protein
has been shown to exist in two forms: the monomeric
form, which has pro-inflammatory properties [66,67];
and the circulating pentamer form [68]. Authors have
recently shown that the aggregated forms of Aβ plaques
lead to the formation of the pro-inflammatory mono-
meric form of C-reactive protein, which exacerbates
local inflammation [65].
There is currently much evidence suggesting the

involvement of a systemic immune response in AD.
Indeed, numerous investigations suggest that in addition
to the central nervous system (CNS) cells, blood-derived
cells can also be blamed for the inflammatory response
and seem to accumulate in the AD brain [69-71]. Other
studies have shown changes in the distribution and
reactivity of immune cells in the blood [63,72-75]. Brit-
schgi and Wyss-Coray have shown that there is commu-
nication between CNS and cells and factors involved
in the systemic immune response [74]. In particular,
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neuroinflammation induces the efflux of proteins, such
as Aβ, or inflammatory mediators from CNS across the
blood–brain-barrier (BBB); this may cause systemic
immune reaction and recruitment of myeloid or lympho-
cytic cells into the CNS.
Indeed, it is known that BBB has a “monitoring role”

between the immune system and AD to protect the
brain from the entry of macromolecules, like immuno-
globulins, and cells, including immunocompetent cells.
A recent assumption supposes that microvascular dis-
eases, often associated with AD, microtraumas and in-
flammation could cause the abnormal permeability of
the BBB. The consequence of this impairment is the
anomalous presence of serum proteins in the cerebro-
spinal fluid and in the brain, including Aβ. In the brain
Aβ can bind astrocytes, starting a degenerative and
inflammatory process. Finally, autoantibodies bound to
neurons can induce Aβ42 internalization and deposition,
increasing brain damage [74,76].
Under physiological conditions T lymphocytes are few

in the brain, although they are able to cross the BBB. The
T-lymphocyte number increases in AD patients, especially
in the hippocampus and temporal cortex. Herein, acti-
vated microglia increase the expression of MHC I and II,
which allows the migration of T cells [76].
Communication between the CNS and the immune

system in AD could thus influence both the lymphocyte
distribution in the blood and the production of immune
mediators [74]. Therefore, despite T cells being able to
enter the brain tissue, it is also possible that T cells exert
their effects without entering the CNS. Indeed, periph-
eral blood mononuclear cells (PBMCs) from AD patients
produce higher levels of pro-inflammatory cytokines,
such as IL-1β and IL-6, compared with PBMCs from
control subjects [6,7,77]. Other studies have shown that
Aβ stimulates macrophage inflammatory protein (MIP)-
1α overexpression by peripheral T cells and its receptor
CCR5 expression on brain endothelial cells necessary
for T cells crossing the BBB [78]. Moreover, other altered
immune parameters were documented, such as decreased
percentages of naive T cells and an increase of memory
T cells, an increased number of CD4+ T lymphocytes that
lack the co-stimulatory molecule CD28, and a reduction
of CD4+CD25high regulatory T cells [79].
Figure 1 shows the hypothesis that supports the

involvement of the immune system in the pathogenesis
of AD.

Systemic immune profile in Alzheimer’s disease
At present a correct diagnosis of AD, characterized by
pathological changes in the AD brain (that include
neurological loss, extracellular amyloid plaques and
intracellular neurofibrillar tangles), can be only evaluated
by post-mortem autopsy, although a recent study [61]
emphasized the role of soluble Aβ oligomers as a key
factor responsible for the early pre-plaque formation.
Activation of microglia occurs in the early stages of the
disease, even before plaque formation, and is correlated
with early cognitive deficits. As a consequence of the
microglial activation and the deregulation of nerve grow
factor metabolism, these authors have indicated matrix
metalloproteinase-9 as a possible biomarker for signal-
ing the early stages of ongoing CNS inflammation [61].
Another study has put in evidence the use of imaging
techniques for early detection of glial activation prior to
plaque deposition [80].
The evaluation of some modified parameters obtain-

able from the blood of patients could therefore be a goal
for the research on AD.
The knowledge of the aforementioned systemic inflam-

mation in AD patients has suggested a new research area
that focuses on leukocyte modifications, as it would be
desirable to have methods available that allow the use of
peripheral blood from patients to identify “prognostic” or
disease markers.
In this scenario, many authors have identified changes

in lymphocyte distribution and in cytokine levels in the
plasma of AD patients [75,79,81] that support the
involvement of the immune system in AD. Many studies
have reported alterations of both the innate and
acquired immune system [74], although there are many
discordant results (Table 2). Indeed, our group and
others [63,82,83] have reported a decrease both in the
percentage and the absolute number of total B cells from
AD patients when compared with age-matched healthy
controls. We did not observe any changes for the
other main lymphocyte subpopulations [63]. On the
contrary, Xue and colleagues have shown a significant
reduction of CD3+ T cells, but no changes in CD4+ and
CD8+ T-cell subsets [83]. Richartz-Salzburger and collea-
gues confirm the decrease of CD3+ and CD8+ T cells,
but showed a slight increase of CD4+ cells [81]. Larbi
and colleagues emphasized the dramatic changes within
the CD4+ T-cell compartment, with a reduction of naïve
CD4+CD45RA+CCR7+ and a simultaneous increase of
effector memory CD4+CD45RA-CCR7- T cells and of
terminal effector memory RA CD4+CD45RA+CCR7–

T cells [79]. Again, the authors have demonstrated a re-
duction of CD4+CD25high cells, potentially considered
regulatory T cells [79].
More recently, the use of larger numbers of surface

markers confirmed the significant reduction of naïve
CD4+ T cells, identified as CD4+CD28+CD27+CD45RA+

CD45RO- in AD patients, compared with age-matched
controls and a contemporary increase of CD4+CD28–

CD27-CD45RA+CD45RO+ late differentiated memory T
cells [75]. The further evaluation of CD57 and KLRG-1,
commonly considered senescence markers on these cells,



Figure 1 Communication between the central nervous system and systemic immune responses in Alzheimer’s disease patients.
Inflammation clearly occurs in pathologically susceptible regions of the Alzheimer’s disease (AD) brain. Neurodegeneration and
neuroinflammation can result in changes of central nervous system (CNS) proteins (for example, amyloid-beta (Aβ) peptide) or inflammatory
mediators (acute-phase proteins and pro-inflammatory cytokines and chemokines) across the blood–brain-barrier (BBB). These CNS-derived
proteins and mediators may induce systemic immune reactions and/or recruit lymphocytic cells into the CNS. The cells responsible for the
inflammatory reaction in CNS are activated microglia and astrocytes. The hypothesis is that Aβ plaques and tangles stimulate a chronic
inflammatory reaction. Other than CNS resident cells, blood-derived cells can also be blamed for inflammatory response and seem to accumulate
in the AD brain due to the expression of chemokine receptors. The changes in lymphocyte distribution in the AD patient’s blood are also
depicted.
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has demonstrated a significant increase of late differentiated
KLRG-1+CD4+ T cells in AD patients compared with
age-matched healthy controls. No differences have been
reported concerning CD57 expression on CD4+ T cells
when comparing AD patients and their controls [75].
Moreover, the deep characterization of regulatory T cells
as CD4+CD25+FoxP3+CD127low has demonstrated no
differences between the two groups studied, thereby
revealing that the previously reported data [79] are
referred to activated T cells (CD4+CD25+) instead of
regulatory cells. Table 2 describes the reported data.
Regarding CD8+ T cells, no modifications are reported

in AD patients when compared with their age-matched
controls. Indeed, this might be due to the well-known
role of CD8+ T cells in age-related changes strictly corre-
lated with chronic cytomegalovirus infection, which is a
feature common to almost all older people (as well as
AD patients) [35-37].
Aβ42 and in vitro peripheral blood mononuclear
cell activation
A recent hypothesis suggests that persistent stimulation
of the immune system by Aβ peptides leads to B-cell
and T-cell responses, as well as to the release of inflam-
matory mediators.
Although the Aβ aggregates are mainly found in the

brain amyloid plaques, the soluble forms, monomers



Table 2 Main modifications of lymphocytes subpopulations between Alzheimer’s disease patients and age-matched
controls

Phenotype Lymphocyte subpopulation Changesin Alzheimer disease Reference

CD19+ Total B cells Decrease [82]

(percentage) [83]

[63]

CD19+ Total B cells Decrease [82]

(absolute number) [63]

CD3+ Total T cells No change [63]

(percentage) Decrease [81]

[83]

CD3+CD8+(percentage) Cytotoxic T lymphocytes No change [63]
[83]

Decrease [81]

CD3+CD4+ T-helper cells No change [63]

(percentage) [83]

Increase [81]

CD3+CD4+CD45RA+CCR7+ Naïve CD4+ T Decrease [79]

(percentage) cells

CD3+CD4+CD28+CD27+CD45RA+CD45RO- Naïve CD4+ T Decrease [75]

(percentage) cells

CD3+CD4+CD45RA-CCR7- Effector memory Increase [79]

(percentage) CD4+ T cells

CD3+CD4+CD45RA+CCR7-(percentage) Terminal effector memory RA cells Increase [79]

CD3+CD4+CD28-CD27-CD45RA+CD45RO+ Late differentiated Increase [75]

(percentage) CD4+ T cells

CD3+CD4+CD25high Activated CD4+ T Decrease [79]

(percentage) cells

CD3+CD4+CD25+FoxP3+CD127low(percentage) Regulatory T cells No change [75]

CD3+CD4+KLRG-1+(percentage) Senescent CD4+ T cells Increase [75]
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and oligomers, predominate in the plasma where they
may interact with the cells of the immune system [84].
Activation markers and chemokine receptors are over-

expressed in unstimulated AD cells when compared with
controls. This is evidence for the pro-inflammatory sta-
tus of AD [6,7,85,86]. In this scenario, we have reported
an in vitro response of T cells to recombinant Aβ42
(rAβ42). Indeed the CD69 activation marker is overex-
pressed in rAβ42-stimulated AD cells when compared
with their controls [63]. Moreover, we have also reported
an increased expression of the chemokine receptors
CCR2 and CCR5 only on T cells of AD patients after
in vitro stimulation by rAβ42, whereas B cells overex-
press CCR5 after the same in vitro treatment. The
modulated expression of these receptors might enhance
the migration of lymphocytes across the brain
microvascular endothelial cells [87,88]. Strictly related to
the expression of chemokine receptors is the observation
that peripheral T lymphocytes of AD patients produce
higher MIP-1α levels than age-matched controls [78].
This observation, together with the expression of the
MIP-1α receptor CCR5 on the human brain microvascu-
lar endothelial cells, might explain the migration of T
cells and B cells across the BBB. Microglial cells also
produce MIP-1α. It has been demonstrated that MCP-1
via CCR2, expressed on brain endothelial cells, contri-
butes to increased brain endothelial permeability [74,78].
In contrast to these data, we did not observe any signifi-
cant overproduction of MIP-1α in PBMCs in vitro sti-
mulated by rAβ42. This discrepancy might be due to the
different experimental systems used since the produc-
tion/binding of MIP-1α in vivo or in vitro was assessed
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using human brain microvascular endothelial cells [78].
Moreover, in AD patients we and others [63,89] have
demonstrated an increased production of RANTES,
which is one of CCR50s ligands (Table 3).
The role of Aβ42 in the generation of an “inflammatory

milieu” is also suggested by the observation that in vitro
stimulation of PBMCs by rAβ42 induces the production
of different chemokines and cytokines, rendering these
cells active players in the inflammatory response in AD
patients [63]. In fact, after an in vitro stimulation of
PBMCs, AD patients have shown a significantly high
production of the inflammatory cytokines IL-1β, IL-6,
TNF-α and IFN-γ. We have also reported an increase of
the anti-inflammatory cytokines IL-10 and IL-1 receptor
antagonist, so we hypothesized that this situation might
balance the overproduction of the above-described pro-
inflammatory cytokines. As previously stated, however,
there is an efflux of amyloid from CNS that can prime
lymphocytes. Some authors have demonstrated a reduc-
tion of both pro-inflammatory and anti-inflammatory
cytokines, hence assuming a general impairment of im-
mune functions in AD patients, whereas others have
demonstrated a decrease of IL-10, an increase of MIP1-
α and an increase of IFN-γ, respectively [74,78,82,88].
Methodological differences (mitogen or Aβ stimulation)
among the different studies, including inclusion criteria
for both AD patients and healthy controls, might explain
the great variability of data (Table 3).
Table 3 Cytokines, growth factors, chemokines and
chemokine receptors on Alzheimer’s disease patients
after in vitro stimulation

Stimulated vs. unstimulated
AD patients

Reference

Cytokines

IL-1β,IL-6,TNF-α,IL-1ra Increase [63]

IFN-γ Increase [63]

[82]

IL-10 Decrease [77]

Increase [63]

Growth factors

GM-CSF,G-CSF Increase [63]

Chemokines

Eotaxin,MIP-1β Increase [63]

RANTES Increase [89]

MIP-1α No change [63]

Chemokine receptors

CCR2 and CCR5 on T cells Increase [63]

CR5on B cells Increase [63]

AD, Alzheimer’s disease; G-CSF, granulocyte colony-stimulating factor; GM-CSF,
granulocyte–macrophage colony-stimulating factor; IL-1ra, IL-1 receptor
antagonist; MIP, macrophage inflammatory protein.
Since monocytes are the main source of IL-6 and
TNF-α and they possibly efficiently bind Aβ42 via CD36,
the pattern of cytokine production observed by us is
the one to be expected. Besides, we have previously
demonstrated an increased expression of the scavenger
receptor CD36 on monocytes from AD subjects in un-
stimulated and stimulated cultures that could be related
to their efficient role to bind plasmatic Aβ which in turn
causes the production of cytokines, chemokines, and
reactive oxygen species, hence activating the signaling
cascade necessary for cellular migration, adhesion, and
phagocytosis [63].
In addition, the engagement of monocytes might ren-

der these cells more efficient in T-cell activation [90].
Some studies have suggested receptors for advanced
glycosylation end products as possible candidates for the
role of soluble Aβ receptors. These receptors have been
found on CD4+ T-cell surfaces and are known to bind
various molecules including Aβ; ligation of receptors for
advanced glycosylation end products results in cell acti-
vation and inflammatory response [91]. Another possible
receptor might be Toll-like receptor-4 [92,93], expressed
on CD4+ T cells, for which the potentially modulatory
effect upon ligation by Aβ may even be direct.

Conclusions
Many modifications of immune and inflammatory sys-
tems have been reported in patients affected by AD.
These changes might be the consequence of the overpro-
duction of Aβ that can activate the blood cells, rendering
them active producers of inflammatory mediators. On
the contrary, the role of the genetic background namely
the polymorphisms of genes involved in the immune-
inflammation must be considered to fully elucidate the
complex mechanisms that play a role in the generation
of AD. Moreover, as a high proportion of women are
affected by AD, especially at a very advanced age, it is
important to consider the role played both by hormones
and levels of education regarding the different propensity
of males and females to develop disease. Fascinatingly,
other important risk factors that could be related to the
typical pro-inflammatory status of older people are envi-
ronmental events in early life as well as childhood IQ.
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