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From cellular senescence to age-associated
diseases: the miRNA connection
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Abstract

Cellular senescence has evolved from an in-vitro model system to study aging in vitro to a multifaceted
phenomenon of in-vivo importance as senescent cells in vivo have been identified and their removal delays the
onset of age-associated diseases in a mouse model system. From the large emerging class of non-coding RNAs,
miRNAs have only recently been functionally implied in the regulatory networks that are modified during the aging
process. Here we summarize examples of similarities between the differential expression of miRNAs during
senescence and age-associated diseases and suggest that these similarities might emphasize the importance of
senescence for the pathogenesis of age-associated diseases. Understanding such a connection on the level of
miRNAs might offer valuable opportunities for designing novel diagnostic and therapeutic strategies.
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Introduction
During aging the incidence of acute and chronic condi-
tions such as neurological disorders, diabetes, degenera-
tive arthritis, and even cancer rises within individuals, so
that aging has been termed the substrate on which age-
associated diseases grow. Still, the molecular pathways
underlying aging are not well understood as large indi-
vidual heterogeneity of the biological aging process is
observed. These interindividual differences are proposed
to derive from accumulation of stochastic damage that is
counteracted by genetically encoded and environmen-
tally regulated repair systems. At the level of molecules
repair works by enzymatic systems while on the cellular
level it works by replication and differentiation to main-
tain tissue homeostasis. However, the replicative poten-
tial of somatic and adult stem cells is limited by cellular
senescence and recent evidence shows that counteract-
ing senescence or removing senescent cells delays the
onset of age-associated pathologies. Here we summarize
the current knowledge on how miRNAs might be con-
necting senescence and age-associated diseases and how
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Cellular senescence
Replicative senescence was discovered almost 50 years
ago when Hayflick observed that normal human cells in
culture do have a limited replicative potential [1]. The
counting mechanism of the amount of replications was
found to be telomere shortening due to the end replica-
tion problem [2]. After reaching the replicative limit also
termed Hayflick limit, cells enter an irreversible growth
arrest that is triggered by critically short, unprotected
telomeres that induce a DNA damage like signal [3].
This cell cycle arrest is executed by either of the two im-
portant cell cycle inhibitors, p21 or p16, and has so far
not been reversible by any known combination of
growth factors [4].

Triggers of cellular senescence
By now, several other triggers to a replicative
senescence-like irreversible growth arrest have been
observed (Figure 1), leading to a the broader term ‘cellu-
lar senescence’ that includes: (1) replicative senescence;
(2) senescence that is induced by various physico-
chemical stressors that induce DNA damage and chroma-
tin disruption, such as, for example, oxidative stress leading
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Figure 1 Age-associated functional decline of organs and tissues.
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to the term stress-induced premature senescence (SIPS); as
well as (3) hyperoncogenic signaling-induced senescence,
for example by constitutively active HRAS [5,6].
The senescent cell phenotype is characterized by a

combination of changes in cell morphology, behavior,
structure, and functions. This includes alteration in gene
expression [7], protein secretion [8], and inducibility of
apoptosis, which increases in senescent fibroblasts [9]
and decreases in endothelial cells [10].

Cellular senescence in vivo
By now, the presence and age-related accumulation of
senescent cells in vivo has become well accepted
[7,11,12] in various tissues like skin [13], liver [14], kid-
ney [15-17], vasculature [18,19], as well as astrocytes in
the cortex of the brain [20,21]. Astrocyte senescence as
a component of Alzheimer’s disease.
But is such an accumulation ‘good’ or ‘bad’ for the or-

ganism? There seems to no easy answer to this question
considering the different faces of senescence [22].
Beneficial functions of senescence include limitation of
the extent of fibrosis following liver damage [14]. In
addition, senescence has also been well accepted by now
as a tumor suppressor mechanism, even in vivo. As sen-
escent cells never re-enter the cell cycle, senescence is
considered to prevent malignant transformation of po-
tentially mutated cells.
However, some senescent cells also persist within tis-

sues and are not eliminated by apoptosis or the immune
system, such that their altered functional profile might
alter tissue microenvironments in ways that can promote
both cancer and aging phenotypes [22-24]. Especially in
regard to age-associated diseases like atherosclerosis
[18,19,25] or kidney diseases [26], increasing amounts of
senescent cells have been found to at least correlate as
will be outlined in more detail below. Causality beyond
correlation, however, is supported by the fact that re-
moval of senescent, p16 positive cells in mice delays the
onset of at least three prominent age-associated diseases,
cataract, sarcopenia, and loss of adipose tissue, even if
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the model system of BubR1 knock-out mice seems
artificial due to its premature aging phenotype [27,28].
Similarly, inducible onset of telomerase reverses age-
related functional decline in a third generation telomer-
ase knock-out mouse [29-31] and a gene therapy using
hTERT in old mice delays aging and prolongs the life
span [32].
Thus, the detrimentally altered functionality of senes-

cent cells might lead to a vicious circle accelerating sen-
escence and/or loss of cells within tissues, resulting in
the age-associated decline of body functions and the rise
in age-associated diseases. Such altered functionalities
are clearly caused by changes in the gene expression pat-
tern of senescent cells, which includes non-coding RNAs
and particularly miRNAs.

MicroRNAs: basics of biogenesis, function, and turnover
MiRNAs comprise a large family of approximately 21-
nucleotide-long non-coding RNAs that have emerged as
key post-transcriptional regulators of gene expression
Figure 2 Overview on miRNA biogenesis and translation repression.
and have revolutionized our comprehension of the post-
transcriptional regulation of gene expression. The first
miRNA, lin-4, was discovered by Ambros’s group less
than 20 years ago [33]. Since then, the field of small
non-coding RNAs has exploded, so that today we are
close to developing miRNAs as clinical tools in diagnos-
tics and therapeutic strategies.
The biogenesis of miRNAs (Figure 2) involves proces-

sing from precursor molecules (pri-miRNAs), which are
either transcribed by RNA polymerase II as independent
genes or can be derived from introns after splicing [34].
The pri-miRNAs are processed by Drosha to pre-miR-
NAs, exported to the cytoplasm where Dicer cleaves
them to the mature approximately 20-bp miRNA 5p/
miRNA 3p duplexes. One strand of this duplex is then
incorporated into the miRNA-inducing silencing com-
plex (miRISC) [35].
Silencing of target mRNAs depends on recognition by

base-pair mediated binding. This binding is based on a
‘seed’ region consisting of nucleotides 2 to 8 of the
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miRNA only. This seed can be supported by 30 base-
pairing after a short bulge of non-complementarity in
the ‘canonical’ binding model. In addition, a shorter seed
of down to four nucleotides at the 50 end is still able to
silence targets if 30 compensatory complementary sup-
ports miRNA-mRNA binding [36]. Due to this ‘loose’
specificity, one miRNA is able to regulate up to 100
mRNA targets and therefore seems to orchestrate a large
variety of cellular processes similar to transcription fac-
tors [37,38]. While most miRNAs have been reported to
bind to the 30 end of their mRNA targets, also 50 end
have been identified as miRNA binding sites [39] and
binding within the coding sequence has been found [40].
The variability of miRNA/mRNA targeting, however,

also includes a ‘miRNA-escape mechamism’ on the side
of mRNAs. Alternative polyadenylation has been shown
to generate mRNAs that lack the seed regions and thus
can evade miRNA-mediated regulation in stem cells
[41,42], in quiescent versus proliferating T cells [43,44],
but also in cancer cells, where in consequence shorter
30-UTRs arising from alternative cleavage and polyade-
nylation activate oncogenes [45].
Finally, also miRNA half-life is regulated. It was

shown, that miRNAs are subject to degradation by the
50→ 30 exoribonuclease XRN-2 both in vitro and in vivo.
In vitro, this process involved miRNA release from
AGO, followed by degradation by XRN-2, and both re-
lease and degradation were prevented when mRNA was
present that had binding sites for the miRNA [46]. In
vivo, this so-called target mediated miRNA protection
(TMMP) acts in opposition to miRNA degradation
mediated by XRN-1 and XRN-2 [47].
Summarized, miRNAs are emerging as orchestrators

of cell behavior, conferring robustness and balance to
biological regulatory loops in many basic biological pro-
cesses and diseases like cancer. In addition, some func-
tions of miRNAs in controlling aging processes have
been uncovered recently as are summarized below: miR-
NAs regulate lifespan in the nematode Caenorhabditis
elegans [48,49], various miRNAs are regulated during
mammalian aging in mouse or human tissues [50,51],
and, especially, miRNAs have been implicated in govern-
ing senescence in a variety of human cells [52-55].

MiRNAs and cellular senescence
The identification of miRNAs that contribute to induc-
tion and maintenance of senescence might also reveal
how cellular functions change to allow or even promote
induction of age-associated diseases. The general im-
portance of miRNA biogenesis on senescence has been
established by the finding that dicer knock-out induces
senescence [56].
During the last few years, several studies have then iden-

tified differentially transcribed miRNAs during cellular
senescence in various cell types and different senescence
inducing conditions including fibroblasts [57-63], keratino-
cytes [64,65], endothelial cells [51,66,67], renal cells,
[51,68], T-cells [51], human mesenchymal stem cells of dif-
ferent origins [69,70], UVB-induced senescence of fibro-
blasts (Greussing et al., in revision), mouse embryonic
fibroblasts [71,72], trabecular meshwork cells [73], and
oncogene-induced senescence in human mammary epithe-
lial cells [74]. Most of these miRNAs are still functionally
uncharacterized and might be regulated as a consequence
of senescence, and thus contribute to the cellular pheno-
type of senescence. However, some miRNAs are by now
clearly involved in the regulation of senescence.
With regard to cell cycle regulation, we outline here

only a few examples of miRNAs that are involved in
regulating the senescent phenotype, in particular the let-
7 family of miRNAs which inhibits KRAS, HMGA2, and
c-MYC. In addition, let-7 is involved in aging of the
testis stem cells in Drosophila melanogaster [75]. Simi-
larly, miR15a/16-1 cluster and the miR-17-92 cluster are
potent regulators of cell cycle progression by targeting
CDK6, CARD10, and CDC27 as well as the CDK inhibi-
tor family members p21, p27, and p57 as reviewed re-
cently [76]. Members of the miR-17-92 cluster, the first
identified ‘oncomiR’, has also been found as a commonly
downregulated microRNA cluster in human replicative
[51,77], and stress-induced senescence [73], as well as or-
ganismal aging models. Indeed, inhibition of members of
this cluster induces a senescent-like state in human fibro-
blasts [78], while its upregulation inhibits oncogene-
induced senescence [79]. This indicates that this cluster
is one additional important player not only in the com-
plex regulatory network of cell cycle and tumorigenesis,
but also in aging, emphasizing that these processes are
intricately interwoven [52].
With regard to altered functionality of senescent cells,

such as, for example, the secretion of cytokines, it is of
note that miR-146, which is upregulated in senescent
fibroblasts [59] as well as in endothelial cells, is an in-
hibitor of IL-6 and thus might contribute to the protein
secretion alterations observed in senescent cells [59]
termed the senescence-associated secretory phenotype
(SASP). In addition to such a pro-inflammatory status,
members of the miR-200 family that is causally regulat-
ing epithelial to mesenchymal transition (EMT), which
is an important process in fibrotic as well as metastatic
events, has been found as differentially regulated in met-
formin stress-induced senescence of human fibroblasts
[80] as well as in oxidative stress induced senescence of
endothelial cells [81]. Finally, miR-24 that is regulated in
T cell senescence is also involved in reducing the DNA
damage resistance of these cells and thus might contrib-
ute to depletion of CD28(−) CD8(+) T cells (Brunner,
2012 #10142).
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Replicative senescence, miRNAs, and age-associated
diseases
Aging is the substrate on which age-associated diseases are
growing
The processes underlying normal aging include accu-
mulation of damage and lack of repair on molecular,
cellular, and tissue level ultimately leading to the pro-
gressive decline of body functions. Such a decline
seems to be an initial event in the pathogenesis of sev-
eral diseases. Those pathologies that show rapidly
increased incidence with higher age and that have
advanced age as a single important risk factor are cate-
gorized as age-associated diseases. We here rely on a
classification of age-associated diseases recently com-
piled into a comprehensive list by George Martin and
colleagues [82] and will here put emphasis on those
pathologies that have been connected to cellular senes-
cence (Additional file 1: Table S1). In addition we also
summarized all of these most common diseases of the
elderly (Table 1). Although many types of cancer can
definitely be classified as age-associated diseases, this
is not the focus of this review and we kindly recom-
mend some of the very good reviews in the field of
cancer and miRNAs [83-85].
Table 1 MiRNAs associated with the most common age-
related diseases

Disease miRNA Disease miRNA

Atherosclerosis, miR-21 Kidney disease miR-200a [86]

Ateriosclerosis miR-210 miR-200b

Ischemic heart disease miR-34a miR-141

miR146a/b [87] miR-429

miR-126 [88] miR-205

miR-181 [89] miR-192

miR-17-19 [90] miR-194 [91]

miR-150 [92] miR-204

miR217 [93] miR-215

miR-143 [94] miR-216

miR-145 [95] Osteoarthritis miR-133 [96]

miR-125b [97] Osteomalacia miR-135

Diabetes mellitus, miR-375 [98] Osteoporosis miR-29 [99]

type2 miR-130a [100] miR-233 [101]

miR-200 [100] Cataracts let-7 [102]

miR-124a [103] miR-184 [104]

miR-410 [100] miR-204 [105]

miR-122 [106] Sarcopenia miR-489 [107]

Kidney disease miR-17 [108] miR-1 [109]

miR-29 [110] miR-206 [111]

miR-33 [106]
Senescence, miRNAs, and cardiovascular diseases
Cardiovascular diseases (CWD) (such as atherosclerosis,
diabetes, and hypertension) are the primary cause of death
and disability in the Western world. These diseases have
long been considered to be age-related in terms of their
onset and progression [112]. Vascular aging is associated
with endothelial dysfunctions [113-115], arterial stiffening
and remodeling [116], impaired angiogenesis [117],
defects in vascular repair [118], and with an increasing
prevalence of atherosclerosis [114,119].
A common characteristic of atherosclerosis is neointi-

mal formation, that is alteration of endothelial cell (EC)
physiology and hypoplasia of vascular smooth muscle
cells (VSMC), which produce a multi-layered compart-
ment internally to the tunica media of the arterial wall,
including a gradual narrowing of the vessels lumen
which may lead to thrombus formation and vessel occlu-
sion [120].
The reasons for these associations are still unclear, but

it is plausible that organismal aging and vascular disease
may share common cellular mechanisms. Especially in
regard to cellular senescence in vivo, senescent ECs as
well as VSMCs have been connected to atherosclerosis
[18,19]. The association between vascular pathology and
modification of gene expression gives a reasonable ex-
pectation that miRNAs may have a central role in the
pathogenesis of vessel diseases (Figure 2).

Endothelial cell senescence and miRNAs
The importance of miRNAs in endothelial physiology
(Figure 3) was revealed for the first time through the
in-vitro disruption in human ECs of Dicer and Drosha
[121-123]. ECs lacking either of these two enzymes showed
an impaired ability to form tube structures on matrigel
[123]. The generation of an endothelial-specific Dicer
knock-out mouse model provided direct evidence that
miRNAs are fundamental for the correct vessel develop-
ment in adulthood in response to angiogenic stimuli [121].
In addition, miRNAs in the serum have been proposed as
diagnostic markers for vascular diseases [124-126].
In atherosclerosis, an inflammatory response plays a

central role in disease progression. In order to maintain
the influx of leucocytes to the lesion areas, ECs increase
expression of vascular cell adhesion molecules, such as
VCAM-1. One of the most abundant miRNAs in endo-
thelial cells, miR-126, directly represses VCAM-1 ex-
pression, thus playing an important role in leucocyte
recruitment on the endothelial side [88]. Indeed, miR-
126 is downregulated in human aortic endothelial cells
[67], and circulating levels of VCAM-1 are increased in
elderly human subjects [127] in vivo, in stress-induced
senescent HUVECs in vitro [128], as well as on the sur-
face of endothelial cells in rats in vivo and in senescent
rat ECs in vitro [129]. Therefore, this might contribute



Figure 3 MiRNAs associated with age associated vascular diseases.
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to a pro-inflammatory status that allows for disease pro-
gression and might explain why upregulated VCAM-1 is
suspected to be a causal factor in the pathogenesis of
atherosclerosis [130] and is downregulated by a SCM-
298, a substance that reduces formation of atheroscler-
otic plaques in rabbits [131].
Similarly, miR-217 upregulation in human atheroscler-

otic plaques was observed [66]. In-vitro senescent ECs
also show higher levels of miR-217 than early passage
cells and functionally, miR-217 was able to induce pre-
mature EC senescence with SirT1 as target mRNA [66].
Moreover it was shown, that SirT1 acts in complex with
FOXO3, a factor involved in modulating longevity in
several model systems also regulates senescence in
human cell cultures [93]. Of note, a prominent miRNA
highly expressed in senescent cells and inducing cellular
senescence, miR-34, also converges on SirT1 as a target.
Since high levels of SirT1 have been found protective
against atherosclerosis by several different studies as
reviewed [132], high levels of SirT1 targeting miRNAs as
observed in endothelial senescence might indeed con-
tribute to disease progression.

Vascular smooth muscle cell senescence and miRNAs
Not only endothelial cells, but also vascular smooth
muscle cells (VSMCs) play a major role during events of
arterial remodeling and atherosclerosis development. In-
deed, miR-21 has been found to be deregulated in EC [67]
and fibroblast senescence, as a regulator of neointima le-
sion formation [133]. Downregulation of aberrantly
expressed miR-21 decreased neointima formation in rat
carotid artery after angioplasty which classifies miR-21 as
a potential therapeutic target [133]. Furthermore, miR-143
and miR145 were reported to be downregulated in
VSMCs during neointimal formation in rats [133] and that
dysregulation of miR-143 and miR-145 genes is causally
involved in the aberrant VSMC plasticity encountered
during vascular disease [95]. Indeed, miR-143 is also regu-
lated during senescence, although it has been reported
only in fibroblasts so far [134].

Diabetes mellitus, type 2
Type 2 diabetes mellitus (T2D) has reached epidemic
proportions worldwide [135]. It is estimated that the
current 150 million to 220 million people with diabetes
will rise up to 300 million in 2025 [136]. T2D is a pro-
gressive metabolic disorder characterized by reduced in-
sulin sensitivity, insulin resistance in tissues such as
skeletal muscle, liver and adipose tissue, combined with
pancreatic β-cell dysfunction, resulting in systemic
hyperglycemia [137]. Improper treatment of T2D can
lead to severe complications such as heart disease,
stroke, kidney failure, blindness, and nerve damage
[138].
Cell senescence has recently been postulated as an im-

portant cause/consequence of type 2 diabetes and its
complications [139].
Circulating miRNAs have also been identified here as

potential diagnostic tools [140]. Interestingly, one of the
robustly down-regulated miRNAs in this study is miR-
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126 that is also downregulated in senescent endothelial
cells (see above).
Senescence has also been implicated in insulin secre-

tion, since hTERC knock-out mice in the third gener-
ation are defective in insulin secretion and glucose
metabolism [141]. Remarkably, hTERT gene therapy in
old mice restored the age-dependent loss of insulin sen-
sitivity [32]. Similarly, several miRNAs have been impli-
cated in insulin secretion like miR-375, which is one of
the most abundant miRNAs in pancreatic islets and beta
cells and inhibits insulin secretion via myotrophin
(Mtpn) [98]. Mtpn controls release of the neurotransmit-
ter catecholamine [142], that in turn triggers insulin re-
lease [98]. In terms of cellular senescence, miR-375 has
only been implicated in a chemotherapeutically-induced
senescence of the tumor cell line K562.
More recently, miR-130a, miR-200, and miR-410 also

were described to be involved in the regulation of insulin
secretion [100] and at least members of the miR-200
family are known to contribute to senescence [81].
MiRNAs are not only involved in regulating insulin se-

cretion, but also control insulin signaling in insulin
Figure 4 MiRNAs associated with Type 2 Diabetes mellitus.
target tissues. In Goto-Kakizaki (GK) rats, which are
used as a non-obese model of T2D, members of the
miR-29 family are elevated in muscle, fat, and liver, the
most important insulin-responsive tissues [143]. This
might be causally related to loss of insulin responsive-
ness, since overexpression of miR-29 in vitro in 3 T3-L1
adipocytes also inhibits insulin and glucose responses.
This effect might be due to silencing insulin-induced
gene 1 (Insig 1) and caveolin 2 (Cav2) [143], two key
insulin-responsive proteins. It is of note that miR-29 is
also upregulated during cellular senescence [144].
It can be expected that insulin signaling is also directly

regulated by miRNAs. Major players in this pathway are
insulin receptor substrate (IRS) proteins. Indeed, miR-
145 is established as regulator of IRS1 [145] (Figure 4),
however, for IRS2, the central player in the development
of T2D and its associated complications, no experimen-
tally confirmed target has been identified so far.

Kidney diseases
Almost all types of kidney diseases are more common in
the elderly having higher risk and incidence of both
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acute kidney injury (AKI) and end-stage renal disease
(ESRD). The precursor state of ESRD, namely generic
chronic kidney disease (CKD), is also much more com-
mon in the elderly [146]. Furthermore, fibrotic events
also diminish kidney functionality. This loss of function-
ality again is correlated with increase of senescent cells
in the kidney [15,26,43,147]. Furthermore, high amounts
of senescent cells in kidneys for transplantation are cor-
related with low transplantation success [16,17], sup-
porting the idea that senescent cells are ‘bad citizens’
and ‘bad neighbors’ in the kidney of the elderly. Micro-
RNAs have already been found to be involved in senes-
cence of different kidney cells. In rat mesangial cells,
miR-335 as well as miR-34c promote senescence by sup-
pressing antioxidative defense proteins [68]. Loss of
miR-335 expression has been found in patients of renal
cell carcinoma, which might be in keeping with the idea
Figure 5 MiRNAs in age associated disease of the kidney.
that miR-335 can act as a tumor suppressor by inducing
senescence [148].
In addition, senescent renal proximal tubular epithelial

cells have high levels of miRNAs of the miR-200 family in-
cluding miR-205 [51]. It seems that therefore, senescence
of RPTECs and fibrosis might be linked [149]. Indeed,
EMT seems to be regulated in renal fibrinogenesis by this
family, and miR-200 can ameliorate this condition. It was
shown, that five members of the miR-200 family (miR-
200a/b/c, miR-141, and miR-429) and miR-205 are specif-
ically downregulated in MDCK cells undergoing EMT
[150]. Moreover, miR-200b ameliorates tubulointerstitial
fibrosis in obstructed kidneys and thereby might consti-
tute a novel therapeutic targets in kidney disease [151].
Subsequently, the function of the miR-200 family in regu-
lating ZEB1 and ZEB2 and in modulating EMT in a num-
ber of different cell types has been confirmed [152-155].



Figure 6 MiRNAs associated with osteoporosis.
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Similarly important for regulating EMT in the kidney
are miRNA-192/215 [156], two miRNAs that are specif-
ically high in kidney tissue [91] (Figure 5). miR-192, in
particular, also plays a role in diabetic nephropathy
[157], as its loss correlates with tubulointerstitial fibrosis
and reduction in eGFR in renal biopsies from patients
with established diabetic nephropathy [158].
Finally, miR-29 represses the expression of collagen I

and IV at both the mRNA and protein level [110] and is
downregulated in senescent RPTECs [51], thus it might
contribute to more fibrinogenic material in the aged
kidney.
In keeping with the above, in 34 consecutive patients

with biopsy-proven hypertensive nephrosclerosis, a pro-
gressive disease that results from sclerosis of the small
blood vessels in the kidney and is most commonly asso-
ciated with hypertension or diabetes, intrarenal expres-
sion of miR-200a, miR-200b, miR-141, miR-429, miR-
205, and miR-192 were increased, and the degree of
upregulation correlated with disease severity [159].
Taken together, both cellular senescence as well as miR-
NAs regulated in cellular senescence have been found to
negatively impact on kidney functionality. We therefore
suggest that the link between senescence, miRNAs, and
kidney disease might not only be correlative, but causal
in the aging kidney.

Osteoporosis
The skeleton is continuously remodeled throughout the
lifetime of an individual in a dynamic process of bone re-
sorption and bone formation, to replace damaged bone or
to respond to metabolic needs [160]. This bone turnover
is mediated by the delicate balance of osteoblast and
osteoclast numbers and activities. Osteoclasts resorb bone,
whereas ostoeblasts synthesize new bone [161]. Dysregula-
tion of either one of these cell types therefore results in an
imbalance of bone turnover and pathological conse-
quences, including osteoporosis in case of prevalent bone
resorption, resulting in excessive skeletal fragility leading
to frailty and a high risk of low-trauma fractures.
Hints for the importance of cellular senescence in the

development of osteoporosis come from hTERC knock-
out mice [162,163], hTERT gene therapy that delays the
onset of osteoporosis in old mice [32] as well from the
fact that removal of senescent p16+ cells also delays the
onset of skeletal deformation in the progeroid BubR1 de-
ficient mouse [27]. The cell types mainly studied with
regard to senescence are mesenchymal stem cells that
are the progenitors for osteoblasts. It has been shown
that the replicative potential of MSCs clearly depends on
the age of the donor [164], a fact that is not so clear for
fibroblast strains [165].
Although, a clear physiological link between osteoporosis

and the loss of replicative potential of cells seems to exist,
too few studies have yet addressed miRNAs and MSC sen-
escence. Still, we want to point out some candidate
miRNAs that have been found to play a role during the dif-
ferentiation from MSCs to osteoblasts (Figure 6), among
them miR-637 [166], miR-133 and miR-135, the miR-29
family [99,167], and miR-138 [168]. In regard to osteo-
clasts, only few reports exist and identify miR-233 to re-
duce formation of osteoclast-like cells in RAW264.7
mouse cells as model system [101,169].
However, so far only miR-2861 has been implicated

functionally in osteoporosis, as silencing of it in vivo in
mice reduced bone formation and bone mass [170]. In
addition, mutations in the pre-miR-2861 in two patients
result in lack of mature miR-2861, causing primary
osteoporosis [170].
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Cataract
Cataracts are a very common eye pathology with
advanced age being one of the most prominent risk fac-
tors. Most people above the age of 65 years show some
changes in lens structure and most will develop a cata-
ract in time [171]. Recently it was shown that cataract
formation was significantly accelerated in BubR1H/H

mice. However, by removal of senescent cells the onset
of cataract formation was significantly delayed, empha-
sizing the importance of senescence in this regard
[27,28] as well as by hTERT gene therapy [32].
Moreover, it was shown that miRNAs play a role in

age-related cataracts [102]. Let-7 miRNA, an important
regulator of cellular aging and tissue senescence [102],
was demonstrated to be positively associated with pa-
tient age and a positive correlation was also observed
between cataract and higher expression of let-7b
miRNA in patients with age-related cataracts [102].
Moreover it was shown that miR-184 and miR-204 play
a role in formation of secondary cataracts, formed
mostly after eye surgery, or caused by diabetes or ster-
oid use [105].

Sarcopenia
Sarcopenia can be defined as the age-related loss of
muscle mass, strength, and function, and appears to
begin in the fourth decade of life and accelerates after
the age of approximately 75 years [109,172]. While many
factors contribute to the onset of sarcopenia, one of the
main causes is a change in the nature of a small popula-
tion of muscle stem cells, also called satellite cells. Simi-
lar to cataracts, skeletal muscle degeneration was greatly
reduced in BubR1H/H muscles after removal of senes-
cent, p16 positive cells [27,28]. In addition, senescence
of muscle cells and satellite cells seems to be implicated
in muscle metabolism and disease [173-175].
So far, however, only a few miRNAs were found to be

implicated in satellite cell regulation. MiRNA-489 is highly
expressed in quiescent satellite cells and is quickly down-
regulated during satellite-cell activation [107]. Further
analysis revealed that miR-489 functions as a regulator of
satellite-cell quiescence, as it post-transcriptionally sup-
presses the oncogene Dek, the protein product of which
localizes to the more differentiated daughter cell during
asymmetric division of satellite cells and promotes the
transient proliferative expansion of myogenic progenitors
[107]. Moreover miR-1 and miR-206 can improve human
satellite cell differentiation via repressing Pax7, a central
player in satellite cell survival, self-renewal, and prolifera-
tion [111,176]. No data are yet available which link these
miRNAs to cellular senescence. It will be interesting to
what extent such a connection might exist, especially in
view to the role of the systemic environment on satellite
cell function, since in heterochronic parabiosis of young
and old mice the proliferation and regenerative capacity of
aged satellite cells was ‘rejuvenated’ [177,178].
Other age-related diseases
Many more age-associated diseases are known (Additional
file 1: Table S1), among them Alzheimer’s disease (AD),
Parkinson’s disease, degenerative arthritis, and destructive
eye diseases. Except for AD and Parkinson’s disease, to date
no reports exist linking miRNAs to these diseases and very
recent reviews are available on miRNAs in neurodegenera-
tive diseases [179]. Similarly, we want to refer the reader to
recent reviews on miRNAs and cancer [83-85], which is
one of the important age-related diseases. In cancer, miR-
NAs have a potential value as tumor markers and it was
shown that deregulation of miRNAs not only results as
consequence of cancer progression but also directly pro-
motes tumor initiation and progression in a cause-effect
manner.
Conclusion
As cellular senescence is becoming ever more prom-
inent as a mechanism that can drive aging and pro-
mote age-related diseases, one of the questions that is
only poorly answered remains: how many senescent
cells can be found in the elderly in specific tissues
and what are the functional changes that tissue spe-
cific cells undergo when senescent, as it is clear that
cell types as diverse as fibroblasts and epithelial or
endothelial cells also will greatly vary when senescent.
The comparison of miRNAs involved in cellular sen-
escence to miRNAs involved in age-associated dis-
eases shows that surprisingly many miRNAs are
shared in these in-vitro and in-vivo situations. While
it is clear that these similarities are merely correlative,
a more detailed study on causal links might be a
good approach to identify novel diagnostic and thera-
peutic strategies for age-associated diseases. In
addition, since miRNAs are only a small part of the
emerging non-coding RNA field, other ncRNAs might
emerge equally important for the understanding of
the aging process and the pathogenesis of age-
associated diseases.
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